14 research outputs found

    Psychiatric Symptoms of Children and Adolescents With Mitochondrial Disorders: A Descriptive Case Series

    No full text
    International audienceBackground: Mitochondrial disorders (MD) are a group of clinically heterogeneous genetic disorders resulting from dysfunction of the mitochondrial respiratory chain. Cognitive impairment is a common feature in adults with MD and psychiatric symptoms are associated with MD in up to 70% of the adult population. The aim of this study is to describe the psychiatric profile in children and adolescents with MD by focusing on the description of psychiatric symptoms.Methods: A cohort of 12 children and adolescents was prospectively recruited between February 2019 and February 2020 in the Reference Center for Mitochondrial Disorders of Angers (France). Participants and their parents completed an anamnestic form to provide socio-demographic data and completed the Global Assessment of Functioning scale, the Brief Psychiatric Rating Scale, the Child Depression Inventory, the Revised Children’s Manifest Anxiety Scale, and the Conner’s Rating Scale to evaluate the inattention/hyperactivity symptoms as well as the Quality of Life scale.Results: Four children (33.3%) were diagnosed with depressive symptoms. With regarding to anxiety, 6 children (50%) reported anxiety issues during the psychiatric interview and 3 children (25%) were suffering from anxiety according to the RCMAS scale. Compared to other children with chronic illnesses, the individuals in our cohort reported a lower overall quality of life score and lower scores in physical and social subscales. Conclusion: Our study shows that MD can lead to psychiatric disorders in children and adolescents, in particular anxiety and depression, as well as poor quality of life. This highlights the need for regular psychiatric assessments in individuals with developing brains, such as children and adolescents. We do not, however, have data regarding the neuropsychological profile of this population

    Bi-allelic variants in DOHH, catalyzing the last step of hypusine biosynthesis, are associated with a neurodevelopmental disorder

    Full text link
    Deoxyhypusine hydroxylase (DOHH) is the enzyme catalyzing the second step in the post-translational synthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] in the eukaryotic initiation factor 5A (eIF5A). Hypusine is formed exclusively in eIF5A by two sequential enzymatic steps catalyzed by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Hypusinated eIF5A is essential for translation and cell proliferation in eukaryotes, and all three genes encoding eIF5A, DHPS, and DOHH are highly conserved throughout eukaryotes. Pathogenic variants affecting either DHPS or EIF5A have been previously associated with neurodevelopmental disorders. Using trio exome sequencing, we identified rare bi-allelic pathogenic missense and truncating DOHH variants segregating with disease in five affected individuals from four unrelated families. The DOHH variants are associated with a neurodevelopmental phenotype that is similar to phenotypes caused by DHPS or EIF5A variants and includes global developmental delay, intellectual disability, facial dysmorphism, and microcephaly. A two-dimensional gel analyses revealed the accumulation of deoxyhypusine-containing eIF5A [eIF5A(Dhp)] and a reduction in the hypusinated eIF5A in fibroblasts derived from affected individuals, providing biochemical evidence for deficiency of DOHH activity in cells carrying the bi-allelic DOHH variants. Our data suggest that rare bi-allelic variants in DOHH result in reduced enzyme activity, limit the hypusination of eIF5A, and thereby lead to a neurodevelopmental disorder

    Accelerated genome sequencing with controlled costs for infants in intensive care units: a feasibility study in a French hospital network

    No full text
    International audienceObtaining a rapid etiological diagnosis for infants with early-onset rare diseases remains a major challenge. These diseases often have a severe presentation and unknown prognosis, and the genetic causes are very heterogeneous. In a French hospital network, we assessed the feasibility of performing accelerated trio-genome sequencing (GS) with limited additional costs by integrating urgent requests into the routine workflow. In addition to evaluating our capacity for such an approach, this prospective multicentre pilot study was designed to identify pitfalls encountered during its implementation. Over 14 months, we included newborns and infants hospitalized in neonatal or paediatric intensive care units with probable genetic disease and in urgent need for etiological diagnosis to guide medical care. The duration of each step and the pitfalls were recorded. We analysed any deviation from the planned schedule and identified obstacles. Trio-GS was performed for 37 individuals, leading to a molecular diagnosis in 18/37 (49%), and 21/37 (57%) after reanalysis. Corrective measures and protocol adaptations resulted in a median duration of 42 days from blood sampling to report. Accelerated trio-GS is undeniably valuable for individuals in an urgent care context. Such a circuit should coexist with a rapid or ultra-rapid circuit, which, although more expensive, can be used in particularly urgent cases. The drop in GS costs should result in its generalized use for diagnostic purposes and lead to a reduction of the costs of rapid GS

    Neurodevelopmental and Epilepsy Phenotypes in Individuals With Missense Variants in the Voltage-Sensing and Pore Domains of KCNH5

    No full text
    International audienceBackground and Objectives KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. Methods We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. Results We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. Discussion We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy
    corecore