27 research outputs found

    Functional PTB phosphate transporters are present in streptophyte algae and early diverging land plants

    Get PDF
    International audienceTwo inorganic phosphate (Pi) uptake mechanisms operate in streptophytes and chloro-phytes, the two lineages of green plants. PHOSPHATE TRANSPORTER B (PTB) proteins are hypothesized to be the Na + /Pi symporters catalysing Pi uptake in chlorophytes, whereas PHOSPHATE TRANSPORTER 1 (PHT1) proteins are the H + /Pi symporters that carry out Pi uptake in angiosperms. PHT1 proteins are present in all streptophyte lineages. However, Pi uptake in streptophyte algae and marine angiosperms requires Na + influx, suggesting that Na + /Pi symporters also function in some streptophytes. We tested the hypothesis that Na + /Pi symporters exist in streptophytes. We identified PTB sequences in streptophyte genomes. Core PTB proteins are present at the plasma membrane of the liverwort Marchantia polymorpha. The expression of M. polymorpha core PTB proteins in the Saccharomyces cerevisiae pho2 mutant defective in high-affinity Pi transport rescues growth in low-Pi environments. Moreover, levels of core PTB mRNAs of M. polymorpha and the streptophyte alga Coleochaete nitellarum are higher in low-Pi than in Pi-replete conditions, consistent with a role in Pi uptake from the environment. We conclude that land plants inherited two Pi uptake mechanisms-mediated by the PTB and PHT1 proteins, respectively-from their streptophyte algal ancestor. Both systems operate in parallel in extant early diverging land plants

    Default in plasma and intestinal IgA responses during acute infection by Simian Immunodeficiency Virus.

    Get PDF
    International audienceABSTRACT: BACKGROUND: Conflicting results regarding changes in mucosal IgA production or in the proportions of IgA plasma cells in the small and large intestines during HIV-infection have been previously reported. Except in individuals repeatedly exposed to HIV-1 but yet remaining uninfected, HIV-specific IgA are frequently absent in mucosal secretions from HIV-infected patients. However, little is known about the organization and functionality of mucosal B-cell follicles in acute HIV/SIV infection during which a T-dependent IgA response should have been initiated. In the present study, we evaluated changes in B-cell and T-cell subsets as well as the extent of apoptosis and class-specific plasma cells in Peyer's Patches, isolated lymphoid follicles, and lamina propria. Plasma levels of IgA, BAFF and APRIL were also determined. RESULTS: Plasma IgA level was reduced by 46 percent by 28 dpi and no IgA plasma cells were found within germinal centers of Peyer's Patches and isolated lymphoid follicles. This lack of a T-dependent IgA response occurs although germinal centers remained functional with no sign of follicular damage, but a prolonged survival of follicular CD4+ T-cells and normal generation of IgG plasma cells is observed. Whereas the average plasma BAFF level was increased by 4.5-fold and total plasma cells were 1.7 to 1.9-fold more numerous in the lamina propria, the relative proportion of IgA plasma cells in this effector site was reduced by 19 percent (duodemun) to 35 percent (Ileum) at 28 dpi. CONCLUSION: Our data provide evidence that SIV is unable to initiate a T-dependent IgA response during the acute phase of infection and favors the production of IgG (ileum) or IgM (duodenum) plasma cells at the expense of IgA plasma cells. Therefore, an early and generalized default in IgA production takes place during the acute of phase of HIV/SIV infection, which might impair not only a virus-specific antibody response but also IgA responses to other pathogens and vaccines as well. Understanding the mechanisms that impair IgA production during acute HIV/SIV infection is crucial to improve virus-specific response in mucosa and control microbial translocation

    No evidence for an association between the -871 T/C promoter polymorphism in the B-cell-activating factor gene and primary Sjögren's syndrome

    Get PDF
    Polyclonal B cell activation might be related to pathogenic over-expression of B-cell-activating factor (BAFF) in primary Sjögren's syndrome (pSS) and other autoimmune diseases. We therefore investigated whether BAFF over-expression in pSS could be a primary, genetically determined event that leads to the disease. The complete BAFF gene was sequenced in Caucasian pSS patients and control individuals. The only single nucleotide polymorphism frequently observed, namely -871 T/C in the promoter region, was then genotyped in 162 French patients with pSS and 90 French control individuals. No significant differences in allele (T allele frequency: 49.7% in patients with pSS versus 50% in controls; P = 0.94) and genotype frequencies of BAFF polymorphism were detected between pSS patients and control individuals. BAFF gene polymorphism was not associated with a specific pattern of antibody secretion either. T allele carriers had significantly increased BAFF protein serum levels (mean values of 8.6 and 5.7 ng/ml in patients with TT and TC genotypes, respectively, versus 3.3 ng/ml in patients with CC genotype; P = 0.01), although no correlation was observed between BAFF polymorphism and mRNA level. In conclusion, BAFF gene polymorphism is neither involved in genetic predisposition to pSS nor associated with a specific pattern of antibody production

    AKAP9-Related Channelopathy: Novel Pathogenic Variant and Review of the Literature

    No full text
    Disease-associated pathogenic variants in the A-Kinase Anchor Protein 9 (AKAP9) (MIM *604001) have been recently identified in patients with autosomal dominant long QT syndrome 11 (MIM #611820), lethal arrhythmia (ventricular fibrillation, polymorphic ventricular tachycardia), Brugada syndrome, and sudden unexpected death. However, AKAP9 sequence variations were rarely reported and AKAP9 was classified as a “disputed evidence” gene to support disease causation due to the insufficient genetic evidence and a limited number of reported AKAP9-mutated patients. Here, we describe a 47-year-old male carrying a novel frameshift AKAP9 pathogenic variant who presented recurrent syncopal attacks and sudden cardiac arrest that required a semi-automatic external defibrillator implant and an electric shock treatment of ventricular arrhythmia. This study provides insight into the mechanism underlying cardiac arrest and confirms that AKAP9 loss-of-function variants predispose to serious, life-threatening ventricular arrhythmias

    NF-κB-Mediated Modulation of Inducible Nitric Oxide Synthase Activity Controls Induction of the Epstein-Barr Virus Productive Cycle by Transforming Growth Factor Beta 1▿†

    No full text
    Transforming growth factor beta 1 (TGF-β1) signal transduction has been implicated in many second-messenger pathways, including the NF-κB pathway. We provide evidence of a novel TGF-β1-mediated pathway that leads to extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, which in turn induces expression of an Epstein-Barr virus (EBV) protein, ZEBRA, that is responsible for the induction of the viral lytic cycle. This pathway includes two unexpected steps, both of which are required to control ERK 1/2 phosphorylation: first, a quick and transient activation of NF-κB, and second, downregulation of inducible nitric oxide synthase (iNOS) activity that requires the participation of NF-κB activity. Although necessary, NF-κB alone is not sufficient to produce downregulation of iNOS, suggesting that another uncharacterized event(s) is involved in this pathway. Dissection of the steps involved in the switch from the EBV latent cycle to the lytic cycle will be important to understand how virus-host relationships modulate the innate immune system

    Association of Physical Activity and Parkinson Disease in Women: Long-term Follow-up of the E3N Cohort Study

    Get PDF
    International audienceBACKGROUND AND OBJECTIVES: Previous cohort studies reported that a single measure of physical activity (PA) assessed at baseline was associated with lower Parkinson's disease (PD) incidence, but a meta-analysis suggested that this association was restricted to men. Due to the long prodromal phase of the disease, reverse causation could not be excluded as a potential explanation. Our objective was to study the association between time-varying PA and PD using lagged analyses to address the potential for reverse causation, and to compare PA trajectories in patients prior to diagnosis and matched controls. METHODS: We used data from E3N (1990-2018), a cohort study of women affiliated with a national health insurance plan for persons working in education. PA was self-reported in six questionnaires over the follow-up. As questions changed across questionnaires, we created a time-varying latent PA (LPA) variable using latent-process mixed models. PD was ascertained using a multistep validation process based on medical records, or a validated algorithm based on drug claims. We set-up a nested case-control study to examine differences in LPA trajectories using multivariable linear mixed models with a retrospective time scale. Cox proportional hazards models with age as the timescale and adjusted for confounders were used to estimate the association between time-varying LPA and PD incidence. Our main analysis used a 10y-lag to account for reverse causation; sensitivity analyses used 5y, 15y, and 20y-lags. RESULTS: Analyses of trajectories (1,196 cases, 23,879 controls) showed that LPA was significantly lower in cases than in controls throughout the follow-up, including 29y before diagnosis; the difference between cases and controls started to increase ∼10y before diagnosis (P-interaction=0.003). In our main survival analysis, of 95,354 women free of PD in 2000, 1,074 women developed PD over a mean follow-up of 17.2y. PD incidence decreased with increasing LPA (P-trend=0.001), with 25% lower incidence in those in the highest quartile compared to the lowest (adjusted hazard ratio=0.75, 95% confidence interval=0.63-0.89). Using longer lags yielded similar conclusions. DISCUSSION: Higher PA level is associated with lower PD incidence in women, not explained by reverse causation. These results are important for planning interventions for PD prevention

    Default in plasma and intestinal IgA responses during acute infection by simian immunodeficiency virus

    No full text
    Abstract Background Conflicting results regarding changes in mucosal IgA production or in the proportions of IgA plasma cells in the small and large intestines during HIV-infection have been previously reported. Except in individuals repeatedly exposed to HIV-1 but yet remaining uninfected, HIV-specific IgAs are frequently absent in mucosal secretions from HIV-infected patients. However, little is known about the organization and functionality of mucosal B-cell follicles in acute HIV/SIV infection during which a T-dependent IgA response should have been initiated. In the present study, we evaluated changes in B-cell and T-cell subsets as well as the extent of apoptosis and class-specific plasma cells in Peyer’s Patches, isolated lymphoid follicles, and lamina propria. Plasma levels of IgA, BAFF and APRIL were also determined. Results Plasma IgA level was reduced by 46% by 28 days post infection (dpi), and no IgA plasma cells were found within germinal centers of Peyer’s Patches and isolated lymphoid follicles. This lack of a T-dependent IgA response occurs although germinal centers remained functional with no sign of follicular damage, while a prolonged survival of follicular CD4+ T-cells and normal generation of IgG plasma cells is observed. Whereas the average plasma BAFF level was increased by 4.5-fold and total plasma cells were 1.7 to 1.9-fold more numerous in the lamina propria, the relative proportion of IgA plasma cells in this effector site was reduced by 19% (duodemun) to 35% (ileum) at 28 dpi. Conclusion Our data provide evidence that SIV is unable to initiate a T-dependent IgA response during the acute phase of infection and favors the production of IgG (ileum) or IgM (duodenum) plasma cells at the expense of IgA plasma cells. Therefore, an early and generalized default in IgA production takes place during the acute of phase of HIV/SIV infection, which might impair not only the virus-specific antibody response but also IgA responses to other pathogens and vaccines as well. Understanding the mechanisms that impair IgA production during acute HIV/SIV infection is crucial to improve virus-specific response in mucosa and control microbial translocation.</p
    corecore