903 research outputs found

    Fokker-Planck equations for nonlinear dynamical systems driven by non-Gaussian Levy processes

    Full text link
    The Fokker-Planck equations describe time evolution of probability densities of stochastic dynamical systems and are thus widely used to quantify random phenomena such as uncertainty propagation. For dynamical systems driven by non-Gaussian L\'evy processes, however, it is difficult to obtain explicit forms of Fokker-Planck equations because the adjoint operators of the associated infinitesimal generators usually do not have exact formulation. In the present paper, Fokker- Planck equations are derived in terms of infinite series for nonlinear stochastic differential equations with non-Gaussian L\'evy processes. A few examples are presented to illustrate the method.Comment: 14 page

    GKW representation theorem and linear BSDEs under restricted information. An application to risk-minimization

    Get PDF
    In this paper we provide Galtchouk-Kunita-Watanabe representation results in the case where there are restrictions on the available information. This allows to prove existence and uniqueness for linear backward stochastic differential equations driven by a general c\`adl\`ag martingale under partial information. Furthermore, we discuss an application to risk-minimization where we extend the results of F\"ollmer and Sondermann (1986) to the partial information framework and we show how our result fits in the approach of Schweizer (1994).Comment: 22 page

    A NOTE ON COMONOTONICITY AND POSITIVITY OF THE CONTROL COMPONENTS OF DECOUPLED QUADRATIC FBSDE

    Get PDF
    In this small note we are concerned with the solution of Forward-Backward Stochastic Differential Equations (FBSDE) with drivers that grow quadratically in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem is a comparison result that allows comparing componentwise the signs of the control processes of two different qgFBSDE. As a byproduct one obtains conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio

    Diffusion Approximation of Stochastic Master Equations with Jumps

    Full text link
    In the presence of quantum measurements with direct photon detection the evolution of open quantum systems is usually described by stochastic master equations with jumps. Heuristically, from these equations one can obtain diffusion models as approximation. A necessary condition for a general diffusion approximation for jump master equations is presented. This approximation is rigorously proved by using techniques for Markov process which are based upon the convergence of Markov generators and martingale problems. This result is illustrated by rigorously obtaining the diffusion approximation for homodyne and heterodyne detection.Comment: 15 page

    Random Time Forward Starting Options

    Full text link
    We introduce a natural generalization of the forward-starting options, first discussed by M. Rubinstein. The main feature of the contract presented here is that the strike-determination time is not fixed ex-ante, but allowed to be random, usually related to the occurrence of some event, either of financial nature or not. We will call these options {\bf Random Time Forward Starting (RTFS)}. We show that, under an appropriate "martingale preserving" hypothesis, we can exhibit arbitrage free prices, which can be explicitly computed in many classical market models, at least under independence between the random time and the assets' prices. Practical implementations of the pricing methodologies are also provided. Finally a credit value adjustment formula for these OTC options is computed for the unilateral counterparty credit risk.Comment: 19 pages, 1 figur

    Pricing Options in an Extended Black Scholes Economy with Illiquidity: Theory and Empirical Evidence

    Get PDF
    This article studies the pricing of options in an extended Black Scholes economy in which the underlying asset is not perfectly liquid. The resulting liquidity risk is modeled as a stochastic supply curve, with the transaction price being a function of the trade size. Consistent with the market microstructure literature, the supply curve is upward sloping with purchases executed at higher prices and sales at lower prices. Optimal discrete time hedging strategies are then derived. Empirical evidence reveals a significant liquidity cost intrinsic to every option

    Efficiently Clustering Very Large Attributed Graphs

    Full text link
    Attributed graphs model real networks by enriching their nodes with attributes accounting for properties. Several techniques have been proposed for partitioning these graphs into clusters that are homogeneous with respect to both semantic attributes and to the structure of the graph. However, time and space complexities of state of the art algorithms limit their scalability to medium-sized graphs. We propose SToC (for Semantic-Topological Clustering), a fast and scalable algorithm for partitioning large attributed graphs. The approach is robust, being compatible both with categorical and with quantitative attributes, and it is tailorable, allowing the user to weight the semantic and topological components. Further, the approach does not require the user to guess in advance the number of clusters. SToC relies on well known approximation techniques such as bottom-k sketches, traditional graph-theoretic concepts, and a new perspective on the composition of heterogeneous distance measures. Experimental results demonstrate its ability to efficiently compute high-quality partitions of large scale attributed graphs.Comment: This work has been published in ASONAM 2017. This version includes an appendix with validation of our attribute model and distance function, omitted in the converence version for lack of space. Please refer to the published versio

    Jump-diffusion unravelling of a non Markovian generalized Lindblad master equation

    Full text link
    The "correlated-projection technique" has been successfully applied to derive a large class of highly non Markovian dynamics, the so called non Markovian generalized Lindblad type equations or Lindblad rate equations. In this article, general unravellings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unravelling can be interpreted in terms of measurements continuous in time, but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and we discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.Comment: 23 page

    First exit times of solutions of stochastic differential equations driven by multiplicative Levy noise with heavy tails

    Full text link
    In this paper we study first exit times from a bounded domain of a gradient dynamical system Y˙t=−∇U(Yt)\dot Y_t=-\nabla U(Y_t) perturbed by a small multiplicative L\'evy noise with heavy tails. A special attention is paid to the way the multiplicative noise is introduced. In particular we determine the asymptotics of the first exit time of solutions of It\^o, Stratonovich and Marcus canonical SDEs.Comment: 19 pages, 2 figure

    Anomalous jumping in a double-well potential

    Get PDF
    Noise induced jumping between meta-stable states in a potential depends on the structure of the noise. For an α\alpha-stable noise, jumping triggered by single extreme events contributes to the transition probability. This is also called Levy flights and might be of importance in triggering sudden changes in geophysical flow and perhaps even climatic changes. The steady state statistics is also influenced by the noise structure leading to a non-Gibbs distribution for an α\alpha-stable noise.Comment: 11 pages, 7 figure
    • 

    corecore