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GKW representation theorem and linear BSDEs under
restricted information. An application to
risk-minimization.

Claudia Ceci* Alessandra Cretarolal Francesco Russof

Abstract

In this paper we provide Galtchouk-Kunita-Watanabe representation results in
the case where there are restrictions on the available information. This allows to
prove existence and uniqueness for linear backward stochastic differential equations
driven by a general cadlag martingale under partial information. Furthermore, we
discuss an application to risk-minimization where we extend the results of Follmer
and Sondermann (1986) to the partial information framework and we show how our
result fits in the approach of Schweizer (1994).

Mathematics Subject Classification (2000): 60H10, 60H30, 91B28.

Key words and phrases: Backward stochastic differential equations, partial information,
Galtchouk-Kunita-Watanabe decomposition, predictable dual projection, risk-minimiza-
tion.

1 Introduction

This paper provides two main contributions. First, we prove Galtchouk-Kunita-Watanabe
representation results in the case where there are restrictions on the available information
and we show an application to risk-minimization. Second, as an important consequence,
we prove existence and uniqueness for linear backward stochastic differential equations
(in short BSDEs) driven by a general cadlag martingale under partial information.

For BSDEs driven by a general cadlag martingale beyond the Brownian setting, there
exist very few results in literature (see |5 and more recently [1] and [2], as far as we are
aware). Here we study for the first time such a general case in the situation where there
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are restrictions on the available information, that represents an interesting issue aris-
ing in many financial problems. Mathematically, this means to consider an additional
filtration H smaller than the full information flow F. A typical example arises when
Hi = Fu—r)+ where 7 € (0,T) is a fixed delay and (t — 7)" := max{0,t — 7} and T
denotes a time horizon.

We start our investigation by considering BSDEs of the form

T
Ytzf—/ ZydM, — (Or - 0y), 0<t<T, (1.1)
t

driven by a square-integrable (cadlag) martingale M = (M;)o<i<1, where T > 0 is a fixed
time horizon, £ € Lz(Q,]-'T,IP’;R) denotes the terminal condition and O = (O¢)o<t<T
is a square-integrable F-martingale with Oy = 0, satisfying a suitable orthogonality
condition that we will make more precise in the next section.

We look for a solution (Y,Z) to equation (ILI]) under partial information, where Y =
(Yi)o<t<r is a cadlag F-adapted process and Z = (Z;)o<t<7 is an H-predictable process
such that E [fOT |Zt|2d(M>t} < 0.

To this aim, we prove a Galtchouk-Kunita-Watanabe decomposition in the case where

there are restrictions on the available information. More precisely, we obtain that every
random variable ¢ € L2(Q, Fr,P;R) can be uniquely written as

T
E=0Uo +/ H*dM; +Or, P-—as., (1.2)
0

where H™ = (H™M)o<;<7 is an H-predictable process such that E [fOT ]Hg‘l|2d<M)t] < 00.
To the authors’ knowledge such a decomposition has not been proved yet in the existing
literature. We will see that decomposition (L[2) allows to construct a solution to the
BSDE (1)) and ensures its uniqueness in this setting.

Moreover, we are able to provide an explicit characterization of the integrand process H’t
given in decomposition (L.2) in terms of the one appearing in the classical Galtchouk-
Kunita-Watanabe decomposition, by using H-predictable (dual) projections.

Finally, we discuss a financial application. More precisely, we study the problem of
hedging a contingent claim in the case where investors acting in the market have partial
information. Since the market is incomplete we choose the risk-minimization approach,
a quadratic hedging method which keeps the replicability constraint and relaxes the self
financing condition, see 6] and [14] for further details. As in [6] and [13], we consider the
case where the price process is a martingale under the real world probability measure.
In [6], under the case of full information, the authors provide the risk-minimizing hedging
strategy in terms of the classical Galtchouk-Kunita-Watanabe decomposition. Here,
by using the Galtchouk-Kunita-Watanabe decomposition under partial information, we
extend this result to the case where there are restrictions on the available information.
Finally, thanks to the explicit representation of the integrand process H™ appearing in

'The space L?(Q, Fr,P;R) denotes the set of all Fr-measurable real-valued random variables H such
that E [|H|?] = [, [H[?dP < oo.



decomposition ([2)), we find the same expression for the optimal strategy in terms of the
Radon-Nikodym derivative of two H-predictable dual projections, that is proved in [13].
The paper is organized as follows. In Section 2] we give the definition of solution to
BSDESs under partial information. Section[3lis devoted to prove existence and uniqueness
results for the solutions, which are obtained by applying the Galtchouk-Kunita-Watanabe
decomposition adapted to the restricted information setting. The explicit representation
of the integrand process H" appearing in (L2) can be found in Section @ Finally, an
application to risk-minimization is given in Section

2 Setting

Let us fix a probability space (€2, F,P) endowed with a filtration F := (F;)o<i<7, where
Fi represents the full information at time ¢. We assume that Fr = F. Then we consider
a subfiltration H := (H;)o<i<r of F, i.e. Hy C Fy, for each ¢ € [0,T], corresponding to
the available information level. We remark that both filtrations are assumed to satisfy
the usual hypotheses of completeness and right-continuity, see e.g. [12].

For simplicity we only consider the one-dimensional case. Extensions to several dimen-
sions are straightforward and left to the reader. The data of the problem are:

e an R-valued square-integrable (cadlag) F-martingale M = (M;)o<i<7 with F-
predictable quadratic variation process denoted by (M) = ((M, M))o<i<T;

e a terminal condition ¢ € L?(Q, Fr,P;R).
Definition 2.1. A solution of the BSDE

T
Ytzg—/ ZodM, — (Op — O;), 0<t<T, (2.1)
t

with data (§,H) under partial information, where O = (O¢)o<i<T 5 a square-integrable
F-martingale with Og = 0, satisfying the orthogonality condition

E [OT /0 ' gotht} ~0, (2.2)

for all H-predictable processes ¢ = (pt)o<t<T such that E [fOT \got\Qd(Mﬁ} < 00, is a
couple (Y, Z) of processes with values in R x R, satisfying (2.1)) such that

o Y = (Yi)o<i<r 15 a cadlag F-adapted process;
o Z = (Zi)o<i<r is an H-predictable process such that E UOT \Zt|2d<M>t] < 00.

Remark 2.2. The orthogonality condition given in (2.2) is weaker than the classical
strong orthogonality condition, see e.g [11] or [12]. Indeed, set Ny = fg psdMs, for each

t € [0,T], where ¢ is an H-predictable process such that E [fOT |<pt\2d(M>t} < oo. If

(O,M);=0 P-—as., Vtel0,T],



then .
<O,N>t:/cp5d(O,M>s:0 P—as., Vtel0,T].
0

Consequently, O - N is an F-martingale null at zero, that implies
E[O«N] =0, Vte|0,T],
and in particular condition ([2.2]).
Remark 2.3. Since for any H-predictable process ¢, the process 1(g 4(s)ps, witht < T,

is H-predictable, condition [2.2]) implies that for every t € [0,T]

t
E [OT/ godes} =0,
0

and by conditioning with respect to Fy (note that O is an F-martingale), we have

E [Ot /Ot %dMS] —E [/Ot @sd(M, 0>8] =0 Vtelo,T).

From this last equality, we can argue that in the case of full information, i.e., Hy = F¢,
for each t € [0,T], condition [22)) is equivalent to the strong orthogonality condition
between O and M (see e.g. Lemma 2 and Theorem 36, Chapter IV, page 180 of [12] for
a rigorous proof).

3 Existence and uniqueness for linear BSDEs under partial
information

Our aim is to investigate existence and uniqueness of a solution to the BSDE ([2.1)) with
data (§,H) driven by the general martingale M in the sense of Definition 21 This
requires to prove a Galtchouk-Kunita-Watanabe representation result under restricted
information.

We introduce the linear subspace E% of L2(Q, Fr,P;R) given by all random variables 7
of the form

T
{U() + / QOtht
0

Lemma 3.1. The set E;’Lq‘ is a closed subspace of L*(Q, Fr,P;R).

T
Uy € Ho, ¢ is H — predictable with E [/ ](pt\2d<M>t} < oo} )
0
(3.1)

Proof. Let U} € Ho and (¢")nen, with ¢ = (¢} )o<t<T, be a sequence of H-predictable
processes satisfying E [ fOT | 2d(M )t} < oo such that the sequence

T
n”:U(?—i-/ opdMy, neN,
0
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converges to some random variable n € L2(Q, Fr,P;R), as n goes to infinity. By taking
the conditional expectation with respect to Hg, we have

Uy =E [n"|Ho] — E [n| Ho], asn — oo.
We set Uy = E [n] Hol]. Since (9™ — U} )nen is a Cauchy sequence in L2(Q, Fr,P;R), it
follows that .
E [/ (o1 — @?)2d<M>t — 0, asn,m — oo.
0

Consequently, (¢™)nen converges in L2(Q, d(M) ®dIP’) to some process ¢ = (¢pr)o<t<T €
L?(9,d(M) ® dP). Finally, since there is a subsequence converging d(M) @ dP-a.e., the
limit ¢ is necessarily an H-predictable process. O

Proposition 3.2. Let £ € L?(Q, Fr,P;R). There exists a unique decomposition of the
form

T
E=Uy+ / Ht”th +Or, P-as., (3.2)
0

where Uy € Ho, H™ is an H-predictable process such that E [fOT \Hz"\zd<M>t} < oo and

O is a square-integrable F-martingale with Oy = 0 such that E[O7 -n] = 0, for every
n € L. Moreover Uy = E [¢| Ho] and E [Or| Ho] = 0.

Proof. The existence and uniqueness property of decomposition (3:2]) is clearly ensured
by the orthogonal projection of the random variable £ onto the space ﬁ% that is closed
in virtue of Lemma Bl Since (Up + [, H{*dM;) is an F-martingale, by taking the
conditional expectation of £ with respect to Ho in (3.2]), we have

T
E [¢|Ho] = E [U0+ / HtdM;
0

7’[0] +E [OT| 7'[0]

T
= [E [U0+/ HtdM,
0

= E [Uo| Hol,

7

HO] L E [E [Or] ol Hol

where in the last equality we have used the fact that E [O7| Fy] = Op = 0. Consequently
E [Or| Ho] = 0 and Uy = E [Up| Ho] = E [€] Ho]. This concludes the proof. O

Theorem 3.3. Given data (§,H), there exists a unique couple (Y, Z) which solves the
BSDE (21)) according to Definition [2].

2The space L*(Q, d(M) ® dP) denotes the set of all F-adapted processes ¢ = (¢t)o<i<r such that

1
T 3
loll L2 (a,a(ay@apy = (E {/ |<Pt|2d<M>t]> < oo.
0



Proof. Existence. Let £} be the linear subspace of L%(2, Fr, P; R) introduced in (B.)).
Given ¢ € L%(Q, Fr,P;R), we know by Proposition that there exists a unique de-
composition of the form

T
§:U0+/ HI*dM; + Ay, P—as.,
0

where in particular A is a square-integrable F-martingale with Ag = 0 orthogonal to all
the elements in E%. We use this result to construct a solution to the BSDE (2.1). We
consider the orthogonal projection of & € L2(Q, Fr,P;R) onto this space:

T
Py (€) == Up + /0 HltdM;.

The couple (Uy, H), where Uy € Hg and H’* is an H-predictable process in L?(£2, d(M)®
dP), uniquely identifies the projection, that exists and it is well-defined since £¥ is closed.
We set

Ar =€ = Ppu(€) € (LF),

where (L£7f)1 denotes the orthogonal subspace of £*. Here A7 corresponds to the
final value of a square-integrable F-martingale A with zero initial value, that implies
E [ — Uy| Fo] = 0. Clearly, we have

‘C% D ([’%t)l = L2(Q’FT7P)‘
Now we define the process Y as follows:
Y :=E [{| 7]

T
=F [UO+/ H*dM; + Ar
0

7|
t
= E [Up| Fo] + / HMdM, + A
0
t
=Yo+/ HMAM, + A, 0<t<T,
0
and we set Z; := H}* and Oy := A, for every t € [0, T]. Then we get
T
th:éh_/ stMs—(OT—Ot), 0<t<T.
t

Uniqueness. Let (Y, Z2), (Y',Z’) be two solutions to the BSDE (Z1]) under partial
information associated to the terminal condition & € L2(Q, Fr,P;R). We set (Y, Z) =
(Y —Y',Z —Z'). Then (Y, Z) satisfies the BSDE

T
¥ — —/ Z,dM, — (Or —0,), 0<t<T, (3.3)
t

6



with final condition Y7 = 0. In addition, we have set O := O — O in ([B.3)), where
O and O’ denote the square-integrable F-martingales with Oy = OE) = ( satisfying the
orthogonality condition

T T
E{OT / wthtFE[O’T / sotht} 0,
0 0

for all H-predictable processes ¢ such that E [fOT \gotlzd(M)t} < o0o. Since (Y,Z) is a
solution of (B3], then

¢
Y@:YOJF/ ZdMg+ 0Oy, 0<t<T. (3.4)
0
Since the process Y is an F-martingale such that Y7 = 0, we have
Y; =E [Yr|F] =0, forallte[0,T].

Thus Y; = Y, P-a.s., for every ¢ € [0,T]. Then we can rewrite (34) as follows
t —_— —
OZ/stMs—l-Ot, 0<t<T.
0

By computing the predictable covariation of fo Z,dM, + O and O and by taking the
expectation of both sides in the equality, for each t € [0, 7], we obtain

0= /Ot Zsd(M,0)s + (O);
_E [ /0 " z.a0i o>8] LE[(0)].

Since Z and O are differences of solutions to the BSDE (Z.1]), then E {fg Zsd(M, O)S} =0
for t € [0, T, and it follows
E[(O)] =0, 0<t<T. (3.5)

By Theorem 4.2 of [11], since O is a square-integrable F-martingale null at zero, we have
that O? — (O) is an F-martingale null at zero. Then by (3.5)

E[Of] =E[(O)] =0, 0<t<T,

that implies O} = 0 P-a.s. for every t € [0,7] and then O; = O, P-as. for every
t € [0,T]. Now, let Y be the unique solution of (2] for a certain H-predictable Z such
that E [fOT |Zt|2d(M>t} < o0, ie.

t
Yt=Y0+/ ZdM,+ 0y, 0<t<T. (3.6)
0

7



It only remains to prove that Z is unique. For ¢t = T equation (B3.6]) becomes
T
YT:§:Y0+/ ZsdMg + Op.
0

By Proposition B2 Z; = H]* P-a.s., for each t € [0,T] and then Z is univocally deter-
mined. This concludes the proof. O

4 Galtchouk-Kunita-Watanabe representation under par-
tial information

We now wish to provide an explicit characterization of the integrand process H™ ap-
pearing in the representation (B.2)) in terms of the one given in the classical Galtchouk-
Kunita-Watanabe decomposition, by means in particular of the concept of H-predictable
dual projection.

Let ¢ € L*(Q, Fr,P;R). We consider the well-known Galtchouk-Kunita-Watanabe de-
composition of & with respect to M:

T
€= U0+/ HfdM; + O, P —as., (4.1)
0

where Uy € Fo, the integrand HF = (Htf Jo<t<7 is an F-predictable process such that
E [fOT |H7 Pd(M);| < oo and O = (Oy)o<i<7 is a square-integrable F-martingale with

@0 = 0 such that <O,M )t = 0, for every t € [0,7]. Moreover, let us observe that
Uo =E [¢| Fol.

In the sequel we will denote by P X the H-predictable projection of a (generic) integrable
process X = (X¢)o<t<r, defined as the unique H-predictable process such that

E[X:1fco| Heo] =P X 1rcnep P—as.

for every H-predictable stopping time 7.

First we give a preliminary result under the additional assumption that the predictable
quadratic variation (M) of the F-martingale M is an H-predictable process. In Theorem
[ we extend such result to the general case.

Proposition 4.1. Let (Uy, H”,O7) be the triplet corresponding to decomposition (@)
of £ € L*(Q, Fr,P;R). Suppose that the predictable quadratic variation (M) of the F-
martingale M is an H-predictable process. Then

T
¢&=Uy +/ H*dM; + Op, P —as.,
0
with
Up=E {ffo’ 7‘[0} ; (4.2)
HY =P(H]), 0<t<T, (4.3)



and O is a square-integrable F-martingale with Oy = 0 such that E [Op - n] = 0, for every
ne L.

Proof. Let
T
f:UO‘F/ H7dM; 4+ O, P—aus.
0

be the classical Galtchouk-Kunita-Watanabe decomposition of ¢ € L?(€2, Fr,P;R). By
taking the expectation of £ with respect to Hy, we have:

T
E [¢| Ho] = E [Uo +/ H dM,
0

”Ho} +E [OT) Ho} . (4.4)
Since (Up + Jo Hi dMy) is an F-martingale, it follows:
~ T
E [Uo+ / Hi dM,
0

T
HO] =E []E [UO + / H dM;, ’HO]
0

.

—E (0| o],
so that we can rewrite (£4) as follows:
E [€| Ho] = E [UO‘ ’Ho} YE [OT‘HO} .
Moreover, since O is an F-martingale null at zero, we have
E [Or| #o] =E [E [0 o] | #o] = 0.
This implies equality ([A2]). To prove equality (£.3]), we need to calculate the orthogonal

projection of ¢ onto the space £}, see (B.0)). For the sake of brevity, we suppose that
Uy = 0. Thanks to Proposition B.2] this means we need to check the following condition:

T T T
E [f/o (Ptht} =E [/0 p(Htf)th/O ‘Ptht] ;

for every H-predictable process ¢ such that E [ fOT e 2d(M )t] < o0o. Taking decompo-

sition (4.]) into account, this corresponds to the following equality:
T T
e| [ #fedon] =& [ ieaan. (45)
0 0

for every H-predictable process ¢ such that E [ fOT || 2d(M >t} < oo. If we write the
process ¢ as follows
p=p" -,



where ¢ and ¢~ denote the positive and the negative part of ¢ respectively, and define
the F-martingales

t t
R;:/O Vetdn,, R;:/O JerdM,, 0<t<T,

equality (LX) is equivalent to the following relationships:
T T
e[ [ #famn) <[ [ v
0 0
T T
B| [ o7 -2 | [ .
0 0

Hence, we can reduce the problem by assuming directly ¢, = 1 in ([£.3]), for each t € [0, 7.
Then, it is enough to prove the equality

E [/OT Hfd(M)t] =E [/OTP(Hf)d<M>t]. (4.6)

Since (M) is H-predictable, Theorem VI.57 in 4] guarantees that equality (4.0) holds,
once we have the positivity of the process H”. By writing

H]: _ (H}—)+ _ (]y']:)f7

and applying the above theorem to the positive and negative parts of H*, (H”)* and
(H]: )~ respectively, and to the associated H-predictable projections, we can get the

result by setting
HY :=P(H) ="((H)") =P((H”)").

O
Example 4.2. Let us consider the particular case where M is a square-integrable F-
martingale that is in addition a Lévy process, Fy = FM and H; = fé{ﬂﬂ with T € (0,7T)
a fived delay. We assume & = h(Mr) € L*(Q, Fr,P;R), for some measurable function
h:R— R.
In this framework, by LemmalAdl (see Appendiz), we know that the integrand appearing
in the Galtchouk-Kunita- Watanabe decomposition (A1) can be written as

H} = F(t,M,-), tel0,T],

where the function F is such that the condition E [fOT |F'(t, Mtf)]2d<M)t] < 00 is satis-

fied. Since in this case (M) is a deterministic process, we can apply Proposition [{.1] and
get
HIZH = pF(ta Mt—) =K [F(ta Mt—)|/Ht*] ) te [07 T]

Then, it is easy to derive the following:

HM — C(t,M(t_T)f) ift>r
L e(t, M) if t <7,

10



where the function ¢ is given by

c(t,y) = / F(t,y + z)dpinr(2),
R
with py denoting the law of My, for every t € [0,T].

4.1 The H-predictable dual projection

It is possible to extend the result of Proposition .1l by using the concept of H-predictable
dual projection. For reasons of clarity, we provide a self-contained discussion about this
kind of projection in presence of more than one filtration. Let G = (G¢)o<i<T be a
cadlag F-adapted process of integrable variation, that is, E[||G|lr] < oco. Here the
process |G|| = (||G]))o<i<r defined, for each t € [0,T7], by

n(A)—1
1Gle(w) = sup Y 1Gur1(w) = Gy (@),
1=0

where A = {tg = 0 < t1 < ... < t,a) = t} is a partition of [0,?], denotes the total
variation of the function ¢ ~» G¢(w).

Proposition 4.3. Let G = (Gt)o<i<r be a cadlag F-adapted process of integrable vari-
ation. Then there exists a unique H-predictable process GH = (GF)OQST of integrable

variation, such that
T T
E { / @thEﬂ] =E [ / @tht} :
0 0

for every H-predictable (bounded) process . The process G™ is called the H-predictable
dual projection of G.

Proof. Without loss of generality, we can restrict our attention to the case where G is
an increasing process and prove the statement on the generators ¢ of the form ¢, =
1(5,(u)lp, with B € H, and s,t € [0,T] with s < t. Indeed, decomposing the process
G as G = Gt — G, where both the positive and negative parts of G are assumed to be
increasing integrable processes, we can suppose G to be increasing such that

E[Gr] =E[||Glr] < oc.

If G is a cadlag, increasing, integrable F-adapted process, we will prove that there exists
a unique increasing, integrable H-predictable process G™ such that for every s, € [0, T]
with s < t and B € Hg, the following relationship holds

E[15(G: - Gy)] = E |15(Gf - G¥)|.

Let G = (Gy)o<t<r be the H-optional projection of G, such that for fixed times ¢ € (0, 7]

ét =E [Gt| Ht] P — a.s..

11



We observe that for every s,¢ € [0,T] with s < ¢ and B € H,, we have
E[15(G; — G,)] =E [13(@ - és)} :
Indeed,
E[15(Gi - Gy)) = E[E [1p(G: — G| )] = E [15 (E (G| H,] - G, )|
_R [13 (IE [ét‘ H} - G)] —F [E [13(@ ~ Gy ’HH
—E |15(G: - Gy)] .

Furthermore, since G is increasing, then G is an H-submartingale, that is
E [ét\ﬂs} —E [E [Gy| He]| Ho] = E [Go| Hy] > E[Gs|Hs] = Gs, 0<s<t<T.

Thanks to Doob-Meyer Theorem on decomposition of submartingales, see e.g. Theorem
3.15 of [11], there exists a unique increasing, integrable H-predictable process G™ such
that G — G® is an H-martingale, that is, for every s,t € [0,T] with s < ¢t and B € Hs,
we have

E [15(Gi — Gy)| =E [15(G} - GF)] .
O

Remark 4.4. If G is an H-predictable process of integrable variation and X is an F-
adapted process satisfying E [fOT Xtht} < 00, then

(X dG)H =PX,dGy, P — as., for everyt € [0,T].

Indeed, by Theorem VI.57 in [4], for any H-predictable (bounded) process ¢ we can prove

that
T T
E |:/ (PtXtht:| =K |:/ SOththt:| .
0 0

4.2 Explicit representation results

We now can apply the results of Subsection Bl to extend Proposition EIl Let P and
‘P be the H-predictable and F-predictable o-field respectively. We consider the measures
p't (vespectively p) defined on P™ (respectively P) such that

1H((s,t] x B) =E [1B(AE*I - AEI)} . BeH, stel0,T], s<t, (47

where A™ is the H-predictable dual projection of A := (f(;5 H7d{M)s)o<i<r, that exists
thanks to Theorem [4.3], and

v u

(0] x F) =E [1F(<M>H - <M>H)} . FeF, uvel0,T], u<v.  (4.8)

Here H” is the integrand appearing in the Galtchouk-Kunita-Watanabe decomposition

).
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Lemma 4.5. Let u™ and pu measures satisfying conditions [ET) and ([ER) respectively.
Then p* < p on PM, that is, u™ is absolutely continuous with respect to the restriction
of i on PH.

Proof. By using the definition of absolute continuity, we wish to show that if whenever
w(E) = 0 for E € P then pM(E) = 0. Let ¢ = (¥)o<i<r be a nonnegative H-

predictable process such that
T
E [ / wtd<M>E“] —0
0

E UOT%d(M%} ~0

that implies that ¢y = 0 d(M) ® dP a.e., since 1 is nonnegative. Finally
T T T
E [/ qptdAEﬂ] =E [/ z/)tdAt] =F [/ ¢tHfd<M>t] =0
0 0 0

Since pu™ < g on P*, thanks to Lemma E5] by the Radon-Nikodym theorem there
exists a P*-measurable function g on [0,7] x Q such that

Then

O]

pM(E) = / g(t,w)du(t,w), VE e PH.
E

This allows to identify the process H’* as the Radon-Nikodym derivative:

Hw N d/"H(tvw)
Ht ( )_ du(t,LL))

Finally, we are ready to state the following theorem.

, (tw) €[0,T] x Q. (4.9)
PH

Theorem 4.6. For any nonnegative F-measurable process H”, the following equality
holds

E UOT gotHfd<M>t] =F [/OT gothHd<M>t} , (4.10)

for every H-predictable process ¢ such that E [fOT ]cpt|2d<M>t] < 0o. Here H™ is given
by E.9).

Proof. By relationship (4.9]) and definition of the measure p, see ([d8]), we have for every
s,t € [0,T] with s <t and B € H,

M ((s,t]xB) = //H”H )dp(u, w) [13/ H*d(M ]:E[@/:Hfj‘d(mu].

13



On the other hand, by (4.7

t
p*((s,t] x B) =E |15(AF — A{EI)] =F {13/ H{d(M>u] :
S
If ¢ is of the form ¢, = 1(,(u)1p, with B € H;s and s,t € [0,T] with s < ¢, then the
statement is proved since relationship (EI0) is verified on the generators of P, O

We now give the analogous of Proposition [ without assuming that the process (M)
is H-predictable.

Theorem 4.7. Let (ﬁo,Hf, OT) be the triplet corresponding to decomposition (A1) of
€€ L2(Q, Fr,P;R). Then

T

&= U()+/ H;Hth—{—OT, P — a.s., (411)
0

with
Up=E [ﬁo‘Ho] :
dpP(t, w)
Ht =" (tw) e [0,T] x Q,
t d,LL(t,(A)) - ( ) [ ]

where p* and p are given in &) and @ES) respectively, and O is a square-integrable
F-martingale with Oy = 0 such that E [Or - n] = 0, for every n € LX.

Proof. We proceed as in the proof of Proposition 1] by observing that condition (Z.I0])
plays the same role of condition (L.1]). O

In the next proposition we give a useful result which allows us to compute H™ as the
Radon-Nikodym derivative of the H-predictable dual projection A™ of the process A =
(fot H7d(M))o<i<T with respect to the H-predictable dual projection (M)¥ of the F-
predictable quadratic variation (M).

Proposition 4.8. The process A® = ([; HI d(M) )" is absolutely continuous with re-
spect to (MY and it is given by

S

t
A]EI:/ HXAME o<t<T
0

As a consequence
o AP
H] = o, 0<t<T. (4.12)
d(M);

Proof. Set Ay := fg H®d(M) for each ¢ € [0,T]. It is sufficient to prove that

E UOT goudAu] =E UOT goudjiu]
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for every H-predictable (bounded) process ¢. As before, we can consider ¢ of the form
ou = 134 (u)1p, with B € Hs and s <t € [0,T].

Then by the definitions of the measure p and p*, see (ES) and (ET), and recalling (E3)
we get

E [/OT @udﬁu] —E [13 /: Hffd(MﬁH] _ /:/BHZL‘L(w)dM(%w) _ H((s.1] x B) =

e [taaf - %] =& [1a [ 7aen.] <[ [ waal]

which concludes the proof. O

Example 4.9. Suppose that the process (M) is of the form
t

(M); :/ 0dG,, 0<t<T
0

for some F-predictable process a = (ai)o<t<T and an increasing deterministic function

G. Then by Remark[{.4)
t t
o = [reac. A= [riTeac, osisT,
0 0

and as a consequence of Proposition [{.8 we get

(T F
HtH — M’ 0<t<T.
pat
Remark 4.10. Let us observe that if the process (M) is H-predictable, then again by

Remark[{.4) t
(M)f' = (M);, A = / P(H)A(M),, 0<t<T,
0

and by applying Proposition [{.8 we obtain that

HY=PH]), 0<t<T.

5 Risk-minimization under restricted information

In relation to the connection between risk-minimization under full and partial informa-
tion respectively, we now show how our result obtained in Proposition [£.§ fits in the
approach of |13] of risk-minimization under restricted information.

On a probability space (2, F,P) we consider a financial market with one riskless asset
with (discounted) price 1 and one risky asset whose (discounted) price is given by a
square-integrable (cadlag) martingale M = (M;)o<t<7 adapted to a (large) filtration
F = (Ft)o<i<T-

We will study the problem of hedging a contingent claim, whose final payoff is given by

15



a random variable ¢ € L?(Q, Fr,P;R), in the case where investors acting in the market
can access only to the information flow H := (H;)o<i<7 with H; C F, for each t € [0, T].
We choose the risk-minimization approach to solve the above hedging problem. In the
case of full information, in [6] the authors proved that there exists a unique F-risk-
minimizing hedging strategy ¢* = (6*,7n*), where 6* = (0;)o<t<7 is given by the inte-
grand with respect to M in the classical Galtchouk-Kunita-Watanabe decomposition of
¢, ie. 0" = H” (see equation (@1)).
In this section we extend this result to the case where there are restrictions on the availa-
ble information, by using the Galtchouk-Kunita-Watanabe decomposition under partial
information (see equation (3:2)). More precisely, we prove that the H-risk-minimizing
hedging strategy ¢’ = (§*,7) (see Definition below) is such that 67 = H™.
Risk-minimization under restricted information was studied in [13] by using a differ-
ent approach. We obtain the same explicit representation given in Theorem 3.1 of [13]
by applying Proposition L8] About risk-minimization under partial information for de-
faultable markets via nonlinear filtering, we refer to [§]. In particular, they consider
the case where the contingent claim £ is Hp-measurable, in which we can solve the
risk-minimization problem by using the classical Galtchouk-Kunita-Watanabe decompo-
sition.
We now assume that the agent has at her/his disposal the information flow H about
trading in stocks while a complete information about trading in the riskless asset.

Definition 5.1. An H-strategy is a pair ¢ = (0,m) (0, is the number of shares of the
risky asset to be held at time t, while 1y is the amount invested in the riskless asset at
time t) where 0 is H-predictable and n is F-adapted and such that

E [/OT 0§d<M>s} < 00

and the value process V(¢) := OM + n satisfies

2
E (sup |Vt(¢)|> < 0.

t€[0,T]

For any H-strategy ¢, the associated cost process C(¢) is given by

t
Ci(6) = Vi(o) —/ 0,dM,, 0<t<T.
0
Finally the H-risk process of ¢ is defined by
Ry(¢) :=E [(Cr(¢) — Ci(#))*| He], 0<t<T.
Definition 5.2. An H-strategy ¢ = (6,n) is called H-risk-minimizing if Vr(¢) = € P-a.s.

and if for any H-strategy 1 such that V() = £ P-a.s., we have Ri(¢) < Ry(v)) P-a.s.
for every t € [0,T].
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Remark 5.3. By Corollary 3.1 in [13] we have that if ¢ = (0,n) is an H-risk-minimizing
strategqy then ¢ is mean-self-financing, i.e. the cost process C(¢) is an F-martingale.
Moreover, if ¢ = (0,n) is a mean-self-financing H-strategy, then V(¢) is an F-martingale,
hence for a given & € L*(Q, Fr,P;R), we have that Vi(¢) = E [¢| F], for every t € [0,T).

To prove the main result of this section, we need the following Lemma.

Lemma 5.4. Let O = (Ot)o<i<T be a square-integrable F-martingale with Oy = 0,
satisfying the orthogonality condition

T
E |:OT/ gOtht:| =0
0

for all H-predictable processes ¢ = (¢t)o<t<r such that E [fOT loe|?)d(M);| < oo. Then
for any t € [0,T]

T
E |:(OT — Ot)/ psd M
t

’Ht] =0 P-as..

Proof. Since for any H-predictable process ¢
l(th](S)lBgOS, BeH, te€[0,T),

is H-predictable, we get

T T
E [OTlB / gpdes] =E [131@ [OT / psd M,
t t

Ht:|:| - O, VB S Ht,

and then .
E |:OT / ‘;Ddes
t

Finally, let us observe that

T
E {Ot / oud M,
t

Ht] =0 P-as..

T t
’Ht} ~E [Ot / 0sd M, Ht} ~E [Ot / psd M,
0 0

1| =0

since

T T
E [Ot / 0sd M, Ht] =E [E [Ot / osd M,
0 0

and this concludes the proof. O

t
Ht] _E {Ot / sd M,
0

A

Ht:| )

We are now in the position to provide an alternative proof to that given in [13], concerning
the explicit representation for an H-risk-minimizing strategy, by applying the Galtchouk-
Kunita-Watanabe decomposition under partial information and the representation result
given in Proposition .8
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Theorem 5.5. For every ¢ € L?(Q), Fr,P;R), there exists a unique H-risk-minimizing
strategy ¢™ = (7, n™) such that 0" = H™, where H™ is given by @EID) and n]t =
E [¢| Fi] — 0}t My, for every t € [0,T).

Proof. The proof is similar to that of Theorem 2.4 of [14] performed in the full informa-
tion case. Let ¢ = (0,n) be a mean-self-financing H-strategy such that Vp(¢) = £ P-a.s..
Hence, by computing the Galtchouk-Kunita-Watanabe decomposition under partial in-
formation, see ({IT]), we have

T T
Cr () — Cil@) = Vir(d) — Vil@) - / 0.dM, = € — Vi(9) — / 6,dM,
T T
=T +/0 H*dM; + Op — /t 0sdM, — Vi(¢),

where H™ is given by ([@IZ). Since Vi(¢) = E[¢|F], for every t € [0, T], see Remark 5.3,
we get that

t
Vi(6) = Up + /0 HMAM, + O,

and

T
Cr(¢) - Cil¢) = [ {H2 ~ 0.}AM. + 01 - O.
¢
By similar computation we get that
Cr(¢™) = Ci(¢™) = Or — O,

Finally
(©r() = o) = (Cr@) - i) + (| RUASTAtIAY
+2(0r — Oy) /T{H;f‘ ~ 6)dM,

and by Lemma [5.4] we obtain that

Ri(¢) = Ry(¢™) + E He| > Re(6™).

( /t T{Hgf — Hs}dMs>2

Hence ¢™ is H-risk-minimizing. If some other ¢ is also H-risk-minimizing then

(/ o es}dMs)2

which implies H* = 6. Since Vi(¢) = Vi(¢™) = E [¢| F;] for each t € [0,T], we also
obtain ¢ = ¢’t. O

E Ho| =E UOT{H? — 0,12 d(M), %o] =0,
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In the rest of the section we investigate the case where there is a relationship between the
information flow H and the filtration generated by the stock price M, that we denote by
FM . A possible choice is the assumption that investors acting in the market have access
only to the information contained in past asset prices, that is H = FM. Such a situation
has been studied for instance in [7] and |3] for stock price dynamics with jumps. In the
sequel we will assume H C FM | which takes also into account, for instance, the case
where the asset price is only observed at discrete times or with a fixed delay 7 € (0, 7)),
ie. Hy = .7-"(];{7)% for every t € (0,7).

In a such particular case, when in addition & € L?(Q, ]:%/[,IP); R), we can find an H-risk
minimizing strategy, ¢’ = (8%, 1), where 0 is H-predictable and n'! is FM-adapted,
while in the general case 17 has been taken F-adapted. This means that we study the
situation where the agent has at her/his disposal the information flow H € F™ about
trading in stocks and the filtration FM about trading in the riskless asset, and when
H = FM the same information flow.

More precisely, from now on we restrict ourself to consider H-strategies ¢ = (0,7) as
in Definition [.1] where 7 is chosen FM-adapted.

Remark 5.6. Let us observe that given an H-strateqgy ¢ = (6,7), the associated value
process V (¢) := OM +n turns out to be FM-adapted. By Corollary 3.1 in [13], we have
that if ¢ = (0,n) is an H-risk-minimizing strategy according to this new definition, then
¢ is mean-self-financing, i.e. the cost process C(¢) is an FM-martingale. Moreover, if
¢ = (0,1n) is a mean-self-financing H-strategy, then V(¢) is an FM-martingale, hence
V(@) = EIELFM], for every t € [0,

We are now ready to give the following result.

Theorem 5.7. For every £ € LQ(Q,]:QM,IP’; R), there exists a unique H-risk-minimizing
strategy ¢™ = (67, n™) such that 0" = H™, where H™ is given by @EID) and n’t =
E[¢|FM] — 0]t My, for every t € [0,T).

Proof. Since ¢ is FAM-measurable, by decomposition ({11 we obtain that
T
€ =EGIFH) =Uo+ [ HMAM,+ EOr|F)
0

where H™ is given by @I2). Set O; := E[O;|FM], for each ¢ € [0,T]. It is known that
O is an FM_-martingale and

T T T
E {OT / Hﬁth} —E [E [OT]f%4} / Hﬁth] =E [OT / H,?ith} = 0.
0 0 0

Therefore we obtain the Galtchouk-Kunita-Watanabe decomposition of £ under restricted
information with respect to the filtration FM | that is

T
§=U0+/ HMYAM; + Op, P—as..
0
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The rest of the proof follows from Theorem by replacing the filtration F by FM and
the F-martingale O by the FM-martingale O. O
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APPENDIX

A Technical results

Recall that M = (M;)o<i<r is a square-integrable F-martingale and assume that F =
FM .= (FM)o<i<r, i.e. the information flow F coincides with the canonical filtration
FM of M.

Lemma A.l. Let M be a Lévy process and & = h(My) € L*(Q, FM ,P;R) for some
measurable function h : R — R. Then, there exists a measurable function F : [0, T] xR —
R such that

T ~
sz[f]—i—/O F(s,Ms_)dM;s + Op, P — a.s.,

where O = (Oy)o<i<t is a square-integrable FM -martingale null at zero such that (O, M); =
0, for every t € [0,T]. Moreover, the following integrability condition is satisfied

T
E [/ |F(s, Ms_)|?d(M)s| < co.
0
Proof. If £ is given as a Fourier transform of My, that is, the function h is of the form
h(z) = / €““dv(a), for all z € R, (A1)
R

where v is a finite measure, the result is contained in Proposition 4.3 of |9], which was
an adaptation of [10].
As a consequence, the thesis follows once we show the existence of a sequence (hy)nen

of functions of the kind (A such that

E [|hn(MT) — h(Mr)*| —— 0. (A.2)

n—oo
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To see that, denoting by F, (¢, M;_) the integrand in the Galtchouk-Kunita-Watanabe
decomposition of h, (M), n € N, we can proceed as in the proof of Lemmal[3.J]and we get
that the sequence (F,(t, M;_))nen converges in L2(Q, d(M)®dP) to the integrand H” in
the Galtchouk-Kunita-Watanabe decomposition of h(M7). Now, there is a subsequence
converging d(M) @ dP-a.e. to the F-predictable process (H; )o<;<7 and for almost all
t €[0,T), H{ is o(M;_)-measurable. Finally this implies the existence of a measurable
function F: [0,T] x R — R such that H = F(t, M;_).

It remains to show the existence of a sequence (hy, )nen of functions of type (A]) verifying
(A2). If pr is the law of My, (A2), translates into

n—oo

/R (hn(y) — h(y))2dpr(y) —— 0. (A3)

Since pr is a finite non-negative measure, it is well-known that the space of smooth
functions with compact support is dense in L?(pr). This implies that the Schwartz space
S(R) of the fast decreasing functions is dense in L?(p7). Let (hy)nen belong to S(R) such
that (A.3), and consequently, (A.2) holds. Since the inverse Fourier transform F~! maps
S(R) into itself, then we observe that hy, are of the type (Al with v(da) = F~1h,(a)da.

O
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