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Abstract

This paper studies the pricing of options in an extended Black Scholes economy in

which the underlying asset is not perfectly liquid. The resulting liquidity risk is modeled

as a stochastic supply curve, with the transaction price being a function of the trade size.

Consistent with the market microstructure literature, the supply curve is upward sloping

with purchases executed at higher prices and sales at lower prices. Optimal discrete time

hedging strategies are then derived. Empirical evidence reveals a significant liquidity cost

intrinsic to every option.
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Risk management is concerned with controlling three financial risks: market risk, credit

risk and liquidity risk.1 Starting with the Black-Scholes-Merton option pricing formula, both

market and credit risk have been successfully modeled with Duffie (1996) and Bielecki and

Rutkowski (2002) offering excellent summaries of these literatures. In contrast, our understanding

of liquidity risk is still preliminary.

This paper defines liquidity risk as the increased variability in realized returns from forming

a replicating portfolio or implementing a hedging strategy due to the price impact of random

transactions. In particular, the corresponding price impacts for the series of transactions re-

quired to hedge an option are stochastic since they depend on the evolution of the stock price.

Consequently, the liquidity cost associated with replicating an option is random. This liquidity

cost is the manifestation of the liquidity risk inherent in the hedging strategy’s performance.2

The approach in Çetin, Jarrow and Protter (2004) hypothesizes the existence of a stochastic

supply curve for a security’s price as a function of order flow.3 Specifically, a second argument

incorporates the size (number of shares) and direction (buy versus sell) of a transaction to

determine the price at which the trade is executed. For a given supply curve, traders act as price

takers. The greater an asset’s liquidity, the more horizontal its supply curve. In the context of

continuous trading, they characterize necessary and sufficient conditions on the supply curve’s

evolution to ensure there are no arbitrage opportunities in the economy. Furthermore, conditions

for an approximately complete market are also provided.

In the most general setting with unrestricted predictable trading strategies, three primary

conclusions regarding liquidity risk are available. First, all liquidity costs are avoidable when
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(approximately) replicating a derivative’s payoff using continuous trading strategies of finite

variation. Second, as a consequence of the previous statement, the value of a derivative security

is identical to its price in the classical theory which assumes markets are perfectly liquid. Third,

there are no implied bid-ask option spreads that are attributable to illiquidities in the underlying

asset. It is important to emphasize that these conclusions assume continuous trading of arbitrarily

small quantities.

However, not all predictable trading strategies are possible to implement in practice. In

particular, one cannot trade continuously with arbitrarily small quantities. To accommodate

these limitations, we define discrete trading strategies as those simple trading strategies where

the minimum time between successive trades is greater than a given constant δ > 0. Although one

may trade at any point in time, subsequent trades occur after at least δ time units have elapsed.4

This situation is distinct from the classical approach in which “discrete” trading strategies are

not constrained to have a positive time step between trades, enabling them to approximate any

predictable trading strategy, with the cost of approximately replicating a contingent claim given

in Duffie and Protter (1988). In contrast, by imposing a minimum time between trades, the

classical theory is no longer valid. Specifically, one cannot approximate (arbitrarily closely) a

derivative’s payoff even in the absence of illiquidity. Furthermore, with illiquidity, we have an

additional complication as the liquidity costs do not converge to zero even for highly liquid

assets. Consequently, option bid-ask spreads are partially attributable to illiquidities present in

the underlying asset, along with the number of options being hedged.

The purpose of this paper is to investigate the pricing of derivatives using discrete trading
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strategies when the underlying asset is not assumed to be perfectly liquid. Specifically, we study

the pricing and hedging of a European call option on a stock in an extended Black Scholes

economy with illiquidity. In this economy, transaction prices reflect the price impact of order

flow.

After calibrating the model’s parameters to market data, we investigate optimal hedging

strategies in the context of these illiquidities. The optimal hedging strategy results from a dy-

namic program which super-replicates the option payoffs. Two non-optimal discrete time trading

strategies based on the Black Scholes hedge are implemented for comparison. In particular, we

implement Black Scholes hedges at random as well as fixed time points. These Black Scholes

hedging strategies are studied for two reasons. First, they are used in practice (see Jarrow and

Turnbull (2004)) given the infeasibility of continuous hedging (due to market frictions). There-

fore, it is instructive to investigate whether these strategies are nearly optimal in our setting.

Second, because of their popularity in practice, they provide a useful standard for comparison

for understanding the optimal hedging strategy. Not surprising, our empirical results confirm

the non-optimality of the Black Scholes hedging strategies. Furthermore, our empirical results

demonstrate that even under the optimal hedging strategy, liquidity costs comprise a significant

component of an option’s price.

It is important to relate our paper to the literature on transactions costs, including Leland

(1985), Boyle and Vorst (1992), as well as Edirisinghe, Naik and Uppal (1993). Although trans-

actions costs also increase option prices, liquidity risk is endogenous to the trading process.

Moreover, liquidity risk is characterized by a continuous supply curve that is differentiable at the
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origin, implying a well defined limit exists, even for continuous trading. Çetin (2003) contains

further details regarding the distinction between illiquidity and transaction costs.

Our proposed framework is also similar to the feedback effects on stock prices generated by

option hedging demands as well as the literature on large traders. These issues are studied in

Schonbucher and Wilmott (2000), Platen and Schweizer (1998) and Frey (1998). However, in

this context, it is important to emphasize that our specification is a “reduced-form” illiquidity

model since the supply curve is independent of transactions by other agents. Furthermore, our

framework focuses on temporary price impacts.5 Permanent price impacts associated with very

large transactions or a sequence of trades with the same direction are not typical properties of

hedging strategies.

The remainder of this paper begins with a description of the general model in the next section

while Section 2 introduces the extended Black Scholes economy. Estimation of the liquidity

parameter using a sample of five NYSE firms is conducted in Section 3. The derivation of

optimal discrete time hedging strategies is the subject of Section 4. For comparative purposes,

two non-optimal discrete time hedging strategies are also implemented in Section 5. Empirical

results follow in Section 6 with Section 7 offering our conclusions.

1 The Model

This section summarizes the relevant portions of Çetin, Jarrow and Protter (2004) used in the

subsequent analysis. We are given a filtered probability space (Ω, F, (Ft)0≤t≤T ,P) satisfying the

usual conditions where T is a fixed time and P represents the statistical or empirical probabil-
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ity measure for a stock that pays no dividends. Also traded is a money market account that

accumulates value at the spot rate of interest denoted r.

Let S(t, x) represent the stock price, per share, at time t ∈ [0, T ] that a trader pays/receives

for order flow x normalized by the value of a money market account. A positive order (x > 0)

represents a buy, a negative order (x < 0) signifies a sale and x = 0 corresponds to the marginal

trade.

1.1 Trading Strategies and Liquidity Costs

A trading strategy is summarized as (Xt, Yt : t ∈ [0, T ], τ ) where Xt represents the trader’s aggre-

gate holding of stock at time t, and Yt the aggregate position in the money market account, while

τ denotes the liquidation time of the stock in the replicating portfolio. The trading strategy is

subject to the following restrictions:6

1. X0− ≡ Y0− ≡ 0,

2. XT = 0 and

3. X = H1[0,τ ) for some process H(t, ω) where τ ≤ T is a stopping time.7

These restrictions ensure that the trading strategy is liquidated prior to time T which ensures

that round-trip liquidity costs are incurred. The stopping time τ allows the portfolio to be

liquidated prior to time T .

A self-financing trading strategy (s.f.t.s) generates no cash flows for all times t ∈ (0, T )

after the initial purchase. More formally, a self-financing trading strategy is represented as
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(Xt, Yt : t ∈ [0, T ], τ ) where:

1. Xt is càdlàg with finite quadratic variation ([X, X]T < ∞),

2. Y0 = −X0S(0, X0) and

3. for 0 < t ≤ T ,

Yt = Y0 + X0S(0, X0) +

∫ t

0

Xu−dS(u, 0) − XtS(t, 0) − Lt , (1)

where Lt is the liquidity cost, defined as

Lt =
∑

0≤u≤t

∆Xu[S(u, ∆Xu) − S(u, 0)] +

∫ t

0

∂S

∂x
(u, 0)d[X, X]cu ≥ 0 (2)

with L0− = 0.

The expression [X, X]ct denotes the quadratic variation of the continuous component of X at

time t (see Protter (2004)).

Observe that the liquidity cost consists of two components. The first is due to discontinu-

ous changes in the share holdings while the second results from continuous rebalancing. For a

continuous trading strategy, the first term in expression (2) equals

L0 = X0[S(0, X0) − S(0, 0)] ,

even after time zero. If the trading strategy is also of finite variation, then the second term in

equation (2) is zero because [X, X]ct = 0. Thus, for a trading strategy that is both continuous and

of finite variation, the entire liquidity cost is due to forming the initial position and manifested

in L0. Furthermore, if one chooses a continuous trading strategy of finite variation with an
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initial stock position equal to zero (X0 = 0) that quickly “approaches” the desired level, then

the liquidity cost of this approximating s.f.t.s. is also zero. This insight is required to extend the

fundamental theorems of asset pricing.

1.2 Fundamental Theorems of Asset Pricing with Illiquidity

As is standard in the literature, an arbitrage opportunity is any s.f.t.s. (X, Y, τ ) such that

P{YT ≥ 0} = 1 and P{YT > 0} > 0. A modified first fundamental theorem of asset pricing is

available with illiquidity. For β ≥ 0, define

Θβ ≡ {s.f.t.s (X, Y, τ ) | (X− · s)t ≥ −β for all t almost surely} .

The modified first fundamental theorem of finance with illiquidity states that if there exists a

probability measure Q ∼ P such that S(·, 0) is a Q-local martingale, then there is no arbitrage

for (X, Y, τ ) ∈ Θβ for any β.

For pricing derivatives, we assume the existence of such a Q -local martingale for S(·, 0). Next,

a market is defined to be approximately complete if given any contingent claim C , defined as a

Q-square integrable random variable, there exists a sequence of self-financing trading strategies

(Xn, Y n, τn) such that Y n
T → C as n → ∞ in L2(dQ).8 This definition parallels the standard

definition of a complete market. The difference is that the payoff of any contingent claim is only

approximately attained.

Given this definition, a modified second fundamental theorem of asset pricing also holds

in this setting. The modified second theorem states that the existence of a unique probability

measure Q ∼ P such that S(·, 0) = s is a Q-local martingale implies the market is approximately
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complete.

It is perhaps surprising that in an approximately complete market, a continuous and finite

variation trading strategy is always available to approximate any contingent claim that starts

with zero initial holdings in the underlying stock. Indeed, given any contingent claim C , there

exists a predictable process X such that C = c+
∫ T

0
Xudsu and a sequence of s.f.t.s. (Xn, Y n, τn),

where Xn is continuous and of finite variation with the properties Xn
0 = 0, Xn

T = 0 and Y n
0 = c

such that Y n
T → C in L2(dQ). The liquidity cost of this sequence of s.f.t.s. equals zero (since

the first trade is of zero magnitude and the s.f.t.s. is continuous and of finite variation) with the

contingent claim’s payoff at time T approximated by

Y n
T = c +

∫ T

0

Xn
u dS(u, 0) . (3)

Consequently, the arbitrage free value for the contingent claim is its classical value,

EQ[C ] . (4)

This summarizes the three primary conclusions of Çetin, Jarrow and Protter (2004) and motivates

the extended Black Scholes economy with illiquidity presented in the next section.

2 An Extended Black Scholes Economy

To value a European call option in an extended Black Scholes economy, we assume the stock’s

supply curve satisfies

S(t, x) = eαxS(t, 0) with α > 0 (5)
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where

S(t, 0) ≡ st

ert
=

s0e
µt+σWt

ert
, (6)

for constants µ and σ, with Wt denoting a standard Brownian motion.

Equation (6) states that the marginal stock price S(t, 0) follows a geometric Brownian motion,

while the extended Black Scholes economy’s supply curve is given in equation (5). The eαx

functional form for the supply curve is chosen for simplicity and is easily generalized. It is

important to emphasize that the supply curve given in expression (5) is stochastic. After a trade

is executed, a new supply curve S(t, x) is generated for subsequent trades.

Under the supply curve in equation (5), there exists a unique martingale measure Q for S(t, 0)

as explained in Duffie (1996). Hence, applying the extended first and second fundamental theo-

rems of asset pricing with illiquidity, the market is arbitrage-free and approximately complete.

2.1 Pricing a European Call Option

Consider a European call option on the stock with a strike price of K and maturity T , with the

corresponding payoff CT = max[S(T, 0) − Ke−rT , 0]. Expression (4) implies the European call

value equals

EQ[CT ] = e−rT EQ(max[sT −K, 0]) (7)

= s0N(h0) − Ke−rT N(h0 − σ
√

T ) ,

where N(·) denotes the standard cumulative normal distribution function whose argument is

ht ≡ log(st) − log K + r(T − t)

σ
√

T − t
+

σ

2

√
T − t . (8)
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In this setting, the Black Scholes hedging strategy Xt = N(ht) is continuous but not of finite

variation. Therefore, although the Black Scholes formula remains valid given liquidity costs, the

standard hedging strategy does not attain this value. Indeed, equation (2) implies the Black

Scholes hedging strategy results in a positive liquidity cost9

LT = X0(S(0, X0) − S(0, 0)) +

∫ T

0

α (N ′ (hu))
2
su

T − u
du , (9)

as proved in Appendix A.

An example of s.f.t.s. that is continuous and of finite variation, yet approximates the call

option’s payoff is

Xn
t =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n 1[ 1
n

,T− 1
n) (t)

∫ t

(t− 1
n)

+ N(h(u))du , if 0 ≤ t ≤ T − 1
n

n

(
T Xn

(T− 1
n)

− t Xn

(T− 1
n)

)
, if T − 1

n
≤ t ≤ T.

(10)

This strategy starts with Xn
0 = 0 and quickly approaches an “average” of the Black-Scholes

hedge at time t. Then, just before maturity, liquidation transfers the accumulated value into the

money market account. The above trading strategy is seen to have zero liquidity costs with

Y n
T = EQ[CT ] +

∫ T

0

Xn
u−dS(u, 0)

(11)

→ CT = max[S(T, 0) −Ke−rT , 0]

in L2(dQ). To summarize, the above trading strategy is a “smoothed” version of the Black

Scholes hedging strategy that eliminates liquidity risk.10
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2.2 Discrete Hedging Strategies

As previously noted, the continuous hedging strategy in expression (10) cannot be implemented

in practice. A class of feasible trading strategies are the discrete trading strategies defined as any

simple s.f.t.s. Xt where

Xt ∈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xτ01{τ0} +
N∑

j=1

xτj1(τj−1,τj ]

∣∣∣∣∣∣∣∣∣∣∣∣

1. τj are F stopping times for each j,

2. xτj is in Fτj−1 for each j (predictable),

3. τ0 ≡ 0 and τj > τj−1 + δ for a fixed δ > 0 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

These trading strategies are discontinuous because once a trade is executed, the subsequent trade

is separated by a minimum of δ > 0 time units, as in Cheridito (2003). For the remainder of the

paper, lower case values x and y denote discrete trading strategies.

By restricting the class of trading strategies, we retain an arbitrage-free environment although

the minimum distance δ between trades prevents the market from being approximately complete.

In an incomplete (not approximately complete market), the cost of replicating an option depends

on the chosen trading strategy.

For any discrete trading strategy, the liquidity cost equals

LT =
N∑

j=0

[
xτj+1 − xτj

] [
S(τj, xτj+1 − xτj) − S(τj, 0)

]
. (12)

For a discrete trading strategy with xT = 0, the hedging error is given by

CT − YT = CT −
[
y0 + x0S(0, 0) +

N−1∑
j=0

xτj+1 [S(τj+1, 0) − S(τj, 0)]

]
+ LT . (13)
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Thus, there are two components to this hedging error. The first quantity, with a sign reversal

for ease of reference in later applications,

[
y0 + x0S(0, 0) +

N−1∑
j=0

xτj+1 [S(τj+1, 0) − S(τj , 0)]

]
− CT , (14)

is the error in replicating the option’s payoff CT , and is consequently referred to as the approxi-

mation error. Thus, a positive approximation error signifies a surplus in the replicating portfolio

relative to the liability of the contingent claim’s payoff while a negative value represents a deficit.

The second component in equation (13) is the liquidity cost LT defined in equation (12).

Furthermore, since a perfect balance between long and short option positions offsets their li-

abilities and eliminates the need to hedge using the underlying asset, this paper offers a method-

ology to infer option spreads conditional on a specified imbalance in the number of long and

short option positions (aggregated over strike prices and maturities). As emphasized repeatedly

in the remainder of this paper, equation (12) implies that liquidity costs increase quadratically

with the number of options being hedged while prices increase at a linear rate. This is best seen

from equation (16) in the next section. Finally, we focus on replicating long (hedging short) call

positions as they entail the possibility of negative cash flows at maturity.

To provide realistic illustrations of the impact of liquidity costs and hedging errors on the

option’s price, we first need to calibrate the α parameter and confirm the supply curve is upward

sloping. This is the subject of the next section.
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3 Supply Curve Estimation

To investigate the liquidity costs incurred when constructing options with discrete trading strate-

gies, this section details the estimation of the supply curve liquidity parameter α using the TAQ

database. For illustrative purposes, we select five well known companies trading on the NYSE

with varying degrees of liquidity; General Electric (GE), International Business Machines (IBM),

Federal Express (FDX), Reebok (RBK) and Barnes & Noble (BKS). Our empirical analysis is

conducted over a four year period with 1,011 trading days, from January 3, 1995 to December

31, 1998. These five firms represent a cross-section of stocks with respect to daily trading volume

which have options on the Chicago Board of Options Exchange (CBOE).11

3.1 Estimation Procedure

A simple regression methodology is employed to estimate the liquidity parameter α in equation

(5). Although the true price S(t, 0) is unobservable, this term is eliminated by considering two

consecutive intra-day transactions. Let τi denote the time index with corresponding order flow

xτi and stock price S(τi, xτi) for every transaction i = 1, . . . , N in a given day. Thus, we are

led to the following regression specification

ln

(
S(τi+1, xτi+1)

S(τi, xτi)

)
= α

[
xτi+1 − xτi

]
+ µ [τi+1 − τi] + σ ετi+1, τi . (15)

The error ετi+1, τi equals ε
√

τi+1 − τi with ε being distributed N (0, 1). Observe that the left side of

equation (15) is the percentage return between two consecutive trades and this expression reduces
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to a standard geometric Brownian motion when α is identically zero. Transaction prices instead

of the bid-ask spread are utilized for three reasons. First, trades may be executed “inside the

spread” which implies that quotes potentially overestimate liquidity costs. Second, the bid-ask

spread is a commitment to a specific volume which may change according to market conditions.

Third, quotes may be “stale” for infrequently traded stocks.

Given a series of transaction prices, the first issue is to sign the trade volume as either buys

or sells. To accomplish this task, the Lee and Ready (1991) algorithm is employed. Since our

analysis concerns the frequent hedging of options in small quantities, we limit our attention to

transaction sizes (absolute value of order flow) that are less than or equal to ten lots.

Our estimation procedure generates daily estimates for α over the sample period. Therefore,

a total of 1,011 regressions are performed for each of the five firms. The average number of

observations per day for each firm is reported in Table 1.

3.2 Estimation Results

Table 1 below displays the regression results from equation (15). The ninth and tenth columns

record the number of significant α and µ coefficients. Observe that the estimated α parameters are

almost always significantly positive at the 5% level, in contrast to the µ estimates. Thus, much of

the variation in intraday stock prices is attributable to order flow. Furthermore, the statistically

positive α estimates confirms the existence of our hypothesized upward-sloping supply curve in

equation (5).

However, the α estimates are somewhat “noisy” which suggests that alternative supply curve
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formulations may be worth considering, two of which are explored in the next subsection as

robustness tests. Furthermore, it is important to emphasize that the standard errors are only

valid goodness-of-fit measures for an individual day since the estimation procedure is performed

daily.

Figure 1 displays the estimated time series of α parameters over the sample period for IBM,

FDX and BKS which represent high, medium and low liquidity securities respectively. Figure 2

plots the corresponding estimates for GE and RBK. As expected, the α estimates for IBM and

GE are lower than those of BKS and RBK, confirming our intuition regarding differences in their

liquidity.

It is important to emphasize that the liquidity cost of a transaction depends on both α

and the marginal stock price S(·, 0). In particular, for a small α, a Taylor series expansion of

exp
{
α

(
xτj+1 − xτj

)}
in equation (12) implies the terms in the summation are approximately

[
xτj+1 − xτj

]
S(τj, 0)

[
exp

{
α

(
xτj+1 − xτj

)} − 1
] ≈ α S(τj, 0)

[
xτj+1 − xτj

]2
. (16)

Observe the symmetry between purchases and sales as equation (16) indicates the sign of order

flow is irrelevant. Furthermore, we find evidence in Figure 2 that α and the marginal stock price

move inversely to each other. For example, as GE’s stock price increases over this sample period,

its α parameter declines. Intuitively, this suggests that market makers strive to obtain a constant

dollar-denominated fee per lot transacted. Overall, the liquidity cost is a function of both the α

parameter and the frictionless stock price S(·, 0).
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3.3 Robustness Tests

As a robustness check of our α estimates, we alter our original estimation procedure in three

ways. The first modification continues with equation (15) but excludes transactions larger then

five lots. Although the empirical evidence in Hausman, Lo and MacKinlay (1992) suggests

decreasing marginal price impacts, frequent hedging of an option implies small transactions and

this renders many of the transactions recorded in the TAQ database irrelevant to our analysis.12

The second and third robustness checks consist of two alternative supply curves with diminishing

marginal price impacts,13

sgn(x)
√
|x| (17)

and

sgn(x) ln(1 + |x|) . (18)

These two formulations are upward sloping and satisfy the property that S(·, 0) = 0. Fur-

thermore, they only require the estimation of one parameter using the regression procedure in

equation (15). In particular, after applying a logarithm to the ratio of transaction prices, the

exponential functional form facilitates a simple regression analysis for the calibration of α. More

complicated supply curves involving additional parameters are left for future research.

The modified marginal price impacts in equations (17) and (18) are both calibrated with order
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flow up to and including ten lots using the following two regressions which parallel equation (15),

ln

(
S(τi+1, xτi+1)

S(τi, xτi)

)
= α sgn

([
xτi+1 − xτi

]) √∣∣xτi+1 − xτi

∣∣ + µ [τi+1 − τi] + σ ετi+1, τi

and (19)

ln

(
S(τi+1, xτi+1)

S(τi, xτi)

)
= α sgn

([
xτi+1 − xτi

])
ln

(
1 +

∣∣xτi+1 − xτi

∣∣) + µ [τi+1 − τi] + σ ετi+1, τi .

The results of our three robustness tests are now summarized.14 The first robustness test

results in the average number of available daily transactions declining from those reported as n

in Table 1 to 720, 432, 181, 226 and 122 respectively for GE, IBM, FDX, BKS and RBK. Thus,

a loss of information is incurred.

All three robustness tests produce very significant α estimates. Overall, the α estimates are

smallest for equation (15) with a ten lot upper bound (the original procedure) followed by those

generated by transactions of five lots or less. Next in magnitude are the square root estimates

from equation (17), with the log formulation in equation (18) producing the largest α coefficients.

However, the original formulation in equation (15) produces α estimates with the lowest

standard errors. This result is consistent across all five firms. Thus, our subsequent option

pricing investigation is justified in using the α estimates from Table 1.

To further validate the supply curve formulation of liquidity in Section 1, we perform an

additional experiment whose results are contained in Table 2. The “hypotheses” on the left

side of Table 2 offer the implications of our upward sloping supply curve when both time (t)

and information (ω) are fixed. The price inequalities indicate the ordering of transaction prices
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realized in a given sequence of trades. These statements amount to identifying different locations

on the supply curve. To approximate this comparative static in the data, we examine consecutive

transactions in which the influence of µ is negligible. Despite the noise introduced by a change in

time (and information), if the upward sloping supply curve formulation is valid, then we expect

the inequalities to hold for the majority of transaction sequences studied.

The results on the right side of Table 2 confirm the validity of our liquidity model. It is

important to emphasize that our model assumes transitory price impacts and the comparative

static implication assumes no change in information. Hence, only transactions less than 10 lots

are likely to be consistent with those arising from frequent hedging and non-information based

trades (with ω fixed). These situations are best reflected in the first two rows of Table 2. The

last four rows of Table 2 consider situations in which small buy (sell) orders are subsequent to

large buy (sell) orders. In these four rows, information may not be constant across the two

transactions. Therefore, we expect a decline in consistency relative to the first two rows. This

pattern is observed although the decline is slight. More importantly, the bottom four rows in

Table 2 continue to support the implications of our liquidity framework.

3.4 Stochastic Liquidity

It is important to emphasize that variability in the α estimates over time does not imply a

misspecified liquidity model. The standard errors of the α coefficients reported in Table 1 attest

to its accuracy. Moreover, a “stochastic” α process is unnecessary if this parameter varies

inversely with the marginal price, implying a roughly constant dollar-denominated liquidity cost
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per transaction.15 Figures 3 and 4 offer visual evidence consistent with this property.

Statistically, with t representing daily estimates, an AR(1) model is applied to the product

α(t)S(t, 0)

α(t)S(t, 0) = β α(t − 1)S(t − 1, 0) + εt (20)

α(t)S(t, 0) − α(t − 1)S(t − 1, 0) = [β − 1] α(t − 1)S(t − 1, 0) + εt . (21)

We then estimate the β coefficient to investigate whether it is statistically different from one. If

not, then the model

α(t)S(t, 0) − α(t − 1)S(t − 1, 0) = εt , (22)

cannot be rejected and variation in the product over time is merely noise. Several time intervals,

such as 30, 90 and 180 days are examined with equation (22) offering similar results. For

example, 95% confidence intervals for the β parameters over the last 90 days of the sample

period are 0.9943±0.0293, 0.9856±0.0876, 0.9693±0.0902, 0.9947±0.0811 and 0.9744±0.0801

for GE, IBM, FDX, BKS and RBK respectively. Consequently, time variation in α is not a

serious concern when calibrating liquidity costs. Over the entire sample, a slight downward bias

is detected with β being statistically less than one. However, this time period greatly exceeds

available equity option maturities.

In our later empirical implementation of the discrete option hedging strategies we consider

two calculations of the total liquidity cost; the first using equation (12) and the second derived

from the approximate liquidity cost in equation (16). In the second instance, we assume the

α(τj)S(τj, 0) terms are fixed at their initial value α S(0, 0). In particular, we define the approx-
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imate liquidity cost as

L̄T =
N∑

j=0

α(τj)S(τj, 0)
[
xτj+1 − xτj

]2

≡ α S(0, 0)
N∑

j=0

[
xτj+1 − xτj

]2
. (23)

The economic importance of a time-varying α to option pricing is examined empirically by

comparing the liquidity cost estimates in equation (12) versus equation (23). This comparison is

conducted for each of the three discrete time trading strategies analyzed, with details contained

in Section 6.

For emphasis, although the estimates of α and S(t, 0) appear inversely related, one cannot

estimate α after normalizing the
[
xτi+1 − xτi

]
term in equation (15) by S(t, 0). Indeed, the

marginal price S(t, 0) is implied from transaction prices S(t, x) conditional on an estimated

α parameter. Specifically, a time series of marginal prices corresponding to transactions with

zero order flow is unobservable. Instead, only transaction prices in a less than perfectly liquid

market are available. Consequently, inferences regarding S(t, 0) as well as its volatility σ (and

expected return µ) utilize transaction prices S(t, x). These transaction prices are then “inverted”

to determine marginal prices under an assumed supply curve formulation along with estimates

for its parameters such as α.

Therefore, an estimation procedure which attempts to calibrate α′ in the regression formula-

tion

ln

(
S(τi+1, xτi+1)

S(τi, xτi)

)
=

α′

S(t, 0)

[
xτi+1 − xτi

]
+ µ [τi+1 − τi] + σ ετi+1, τi . (24)

instead of equation (15) is misspecified.
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4 Optimal Discrete Option Hedging Strategies

This section derives optimal discrete time hedging strategies for super-replicating an option.

Super-replication is often invoked in the incomplete markets literature due to its independence

from investor preferences and probability beliefs.

4.1 Super-Replication of Options

Our hedging analysis utilizes the discrete trading strategies from Subsection 2.2 with the property

that τN = T . Let Et[·] denote an expectation with respect to the martingale measure and define

Zt = XtS(t, 0) + Yt as the time t marked-to-market value of the replicating portfolio.

For super-replicating a call option, the optimization problem is:

min
(X,Y )

Z0 s.t. ZT ≥ CT = max{S(T, 0) − Ke−rT , 0} (25)

where

ZT = y0 + x0S(0, 0) +
N−1∑
j=0

xτj+1[S(τj+1, 0) − S(τj , 0)] − LT .

At an intermediate time t ≥ 0, this problem is written as16

min
(X,Y )

Zt s.t. ZT ≥ CT = max{S(T, 0)− Ke−rT , 0} . (26)

4.2 Solution Methodology

The solution to the super-replication problem exists since an investor can always hedge by pur-

chasing one unit of the underlying stock. Given the super-replication problem in equation (25),
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the following lemma demonstrates that liquidity costs are minimized by trading as frequently as

possible with the smallest possible quantities.

Lemma 1. The optimal hedging strategy trades whenever possible with the smallest possible trans-

actions. Thus, this strategy has the minimum expected liquidity cost among all super-replicating

portfolios with trades at δ-intervals.

Proof: Under the martingale measure,

E[CT ] ≤ E[ZT ] = y0 + x0S(0, 0) − E[LT ] . (27)

Now, consider trading at two different time points 0 and t with quantities a > 0, b > 0 versus one

combined transaction at time t comprised of a + b > 0. The expected liquidity cost of trading

twice is

S(0, 0)[eαa − 1] + E0[S(t, 0)][eαb − 1] (28)

versus the expected liquidity cost of trading once, E0[S(t, 0)][eα(a+b) − 1]. Under the martingale

measure (with µ = r − 1
2
σ2), the discounted stock price is a martingale with the property

E0[S(t, 0)] = E0

[
s0e

−σ2

2
t+σWt

]
=

s0

er·0 = S(0, 0) . (29)

Using this equation, it is seen that

[eαa − 1] + [eαb − 1] < [eα(a+b) − 1] . (30)

Thus, two trades incur a lower total liquidity cost than one, implying more frequent transactions

are optimal. Indeed, not trading at the first available instant leaves the option position unhedged
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for a period of time. Consequently, an extra transaction is needed at a later date which increases

the expected total liquidity cost and yields a suboptimal portfolio.

To clarify and interpret the above lemma, we emphasize that the optimal hedge minimizes

liquidity costs with respect to all trading strategies that super-replicate the option. However, the

optimal hedge does not produce the smallest liquidity cost among all possible trading strategies.

Indeed, imagine a trivial strategy that does not trade at all. This strategy yields a zero liquidity

cost but does not attempt to control the approximation error. Furthermore, the intuition why

more frequent trading reduces liquidity costs may be drawn from Subsection 1.1 where it is

seen that a continuous strategy of finite variation eliminates the liquidity cost, with an example

provided in equation (10). In our discrete time context, more frequent hedging offers a better

approximation to a continuous hedge strategy of finite variation.

With the previous lemma, we proceed to solve the problem as a constrained discrete time

dynamic program for a fixed ∆ time step. Notationally, δ is reserved for the minimum time

between trades of the same investor. In other words, lower case δ is a market-based parameter

that signifies the smallest duration between consecutive market orders executed for the same

trader. The upper case ∆ represents an input for a binomial option pricing solution and is

simply a computational specification.17

We implement a numerical procedure to solve this problem based on a binomial approximation

to the geometric Brownian motion in expression (6). A two step illustration of this numerical

procedure is discussed in the next subsection. Unlike the transaction costs literature whose limit

implies infinite option prices when trading is continuous, our methodology has ∆ → 0 being
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well defined. In particular, we are discretizing a liquidity framework that allows for dynamic

continuous time rebalancing of the replicating portfolio, as illustrated in the smoothed Black

Scholes hedging strategy of equation (10). In contrast, the traditional super-replication approach

with transaction costs cannot appeal to continuous trading. Instead, a static hedge strategy for

a call option that purchases one unit of stock at time zero is their result. Overall, we impose

an exogenous constraint on trading strategies to conform with market practice, not because

the underlying mathematics limits our analysis to discrete trading. Consequently, the known

convergence of the binomial process to a geometric Brownian motion justifies our numerical

solution, and is consistent with applications to exchange-traded American equity option.

Note that the super-replication procedure ensures the approximation error in equation (14) is

non-negative, even if intermediate stock price movements between hedge portfolio rebalancings

occur. In this instance, super-replicating the option adds the largest (worst case) approximation

errors to the constrained optimization. Therefore, after being translated into higher liquidity

costs, these positive errors are interpreted as forcing the investor to confront more illiquidity.

4.3 Implementation

The following offers a brief summary of the steps required to implement the dynamic program-

ming procedure using a binomial stock price process. Additional details regarding its general

solution are provided in Appendix B. Consider a two-period binomial tree with an initial stock

price denoted S. Up and down factors are signified by U and D respectively and are identical to

those in the standard binomial tree literature. At time 1 (∆ = 1), the stock price is either SU
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or SD while at the option’s maturity, three stock prices are available; SUU , SDU and SDD.

By construction, SUD = SDU since the binomial tree is recombining.

At time 1, in the up state, our objective is to solve for yU and xU , the amount in the money

market account and stock respectively. The minimization problem involves two constraints

minZU
1 = yU + xUSU + α[xU − x1]

2SU (31)

such that yU + xUSUU ≥ max{SUU − K, 0}

yU + xUSDU ≥ max{SDU − K, 0} .

Similarly, in the down node, the quantities yD and xD are obtained as the solution to

minZD
1 = yD + xDSD + α[xD − x1]

2SD (32)

such that yD + xDSDU ≥ max{SDU − K, 0}

yD + xDSDD ≥ max{SDD − K, 0} .

Denote these optimal solutions as x∗
U , x∗

D, y∗
U and y∗

D which appear in the time 0 constraints. At

time 0

minZ0 = x1S + y1 + αx2
1S such that

x1S + y1 + x1(SU − S) = y∗
U + x∗

USU + α[x∗
U − x1]

2SU (33)

x1S + y1 + x1(SD − S) = y∗
D + x∗

DSD + α[x∗
D − x1]

2SD (34)

for which the optimal x1 and y1 values are solved. The super-replication price of the call option

thus equals x∗
1S + y∗

1 + α(x∗
1)

2S. Equations (33) and (34) each pertain to one of the two possible

stock price paths from time 0 to time 1. For example, the left side displays the initial portfolio
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value plus the gain (or loss) on stock position, while the right side is the optimal value of

the replicating portfolio at either the up or down node plus the associated liquidity cost of

rebalancing.

5 Discrete Hedging Strategies for Comparison

Besides the optimal hedge in the previous section, we also investigate non-optimal discrete trading

strategies that employ the Black-Scholeshedge at fixed time intervals as well as random time

points.18 These alternative hedging strategies are implemented via simulation for the geometric

Brownian motion stock price process. These Black Scholes hedging strategies are studied for two

reasons. First, these strategies are implemented in practice (see Jarrow and Turnbull (2004))

because of the infeasibility of continuous hedging. Second, their popularity in practice provides

an appropriate benchmark for comparison with the optimal hedging strategy.

Empirically, we analyze 10 European call options, each on 100 shares of the underlying stock.

The average implied volatility for call options (from Bloomberg)19 and the average closing stock

price (from TAQ) during the sample period serve as inputs with their values reported in Table 1.

Option moneyness is adjusted according to $5 intervals. For example, in-the-money (out-of-the-

money) options have a corresponding stock price that is $5 higher (lower) than the strike price.

Throughout our analysis, results are presented for 30 day option prices although the errors are

similar for other maturities. For simplicity, the riskfree rate is set equal to zero as this has a

negligible impact on the 30 day option’s price (average interest rate below 5% during our sample

period).
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The fixed time trading strategy is represented as xu = xt for u ∈ [t, t + ∆] for a specified

∆ where xt is the Black Scholes delta hedge parameter. Observe that the amount transacted is

random. As alluded to earlier, the dependence on the random stock price necessitates simulation

to price the options. We consider hedging frequencies of one and two days along the stochastic

price path.

The second trading strategy hedges at random time points with xu = xt provided |xu − xt| ≤

θ for a given θ > 0. In particular, trades only occur when the previously executed Black

Scholes delta hedge differs by more than θ from the replicating portfolio’s current requirement.

Thus, transactions are induced by the need to rebalance the hedge portfolio. Moreover, with

a transaction executed the instant the θ barrier is breached, we refer to the quantity traded as

being fixed. The control width θ is chosen to coincide with transaction sizes of 5 and 10 lots.20

The two non-optimal hedging strategies are evaluated using 10,000 simulations, each over a

30 day period. For the random time strategy, rebalancing of the hedge portfolio may occur at

any of 300 points along the stock price path once the control width is breached. However, our

results are not sensitive to this figure. Indeed, as many as 5,000 potential hedge time points are

examined with similar results.21

6 Empirical Results

Our results are contained in Tables 3 to 5 for 10 options, each on 100 shares. Naturally, larger po-

sitions imply greater percentage price impacts for illiquidity as equation (16) illustrates that the

liquidity cost increases quadratically with transaction sizes. Our empirical results are reported
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for components of the hedging error; liquidity costs and approximation errors. For ease of com-

parison, the absolute value of the average approximation error is reported since super-replication

of the option implies only non-negative errors for the optimal hedge strategy.

Using the optimal trading strategy detailed in Subsection 4.3, Table 3 reports summary

statistics for the dollar-denominated liquidity costs22 and as well as their percentage impacts.

The dynamic programming procedure produces an option price x1S(0, 0) + y1 + αS(0, 0)x2
1 that

includes the initial cost of forming the replicating portfolio. To proxy for the frictionless option

price, we resolve the dynamic program under the constraint that α = 0 and utilize the output

x0
1S(0, 0) + y0

1 where the 0 superscript refers to the constraint on the liquidity parameter. This

price serves as the basis for computing the percentage impact of illiquidity.

The last column of Table 3 (as well as Tables 4 and 5), is concerned with the approximate

liquidity cost defined in equation (23). When compared with the results in earlier columns derived

from equation (12), only minor discrepancies are reported. Thus, the economic repercussions of

stochastic liquidity appear to be minor.

6.1 Non-Optimal Hedges

According to Tables 4 and 5, liquidity costs are not sensitive to the rebalancing frequency when

compared with the option’s moneyness. Based on the approach which hedges at fixed time

intervals, approximation errors are reported in Table 4 and experience a significant decrease after

reducing ∆ from two days to one, while the liquidity costs are almost identical.23 Consequently,

more frequent rebalancing yields smaller hedging errors. As recorded in Table 5, the random
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time Black Scholes hedge also produces similar liquidity costs across the two control bands, equal

to 5 and 10 lots. In contrast, the approximation errors are larger for the wider 10 lot control

band. As a result, a smaller value of θ is desirable for reducing the hedging error.

Overall, for the chosen parameters we study, hedging more frequently (smaller ∆ or θ) reduces

the approximation errors, although the liquidity costs are less sensitive to these parameters.

However, even for the smaller values of ∆ and θ, the approximation error remains considerable.

Observe that the optimal trading strategy produces similar, and often lower, liquidity costs

relative to the Black Scholes implementations executed at more frequent intervals. Not surpris-

ingly, for out-of-the-money options, the safety offered by super-replicating an option occasionally

results in higher liquidity costs as more of the stock is purchased to guard against the possibility

of a “bad” scenario coinciding with an increase in the stock price.

As emphasized previously, there are fundamental differences between the optimal and non-

optimal hedge strategies which complicates a direct comparison. Specifically, the non-optimal

hedges add an associated liquidity cost to a frictionless option price, while illiquidity is intrinsic

to the optimal strategy since the hedging error implications of a transaction are accounted for

in the dynamic program’s constrained minimization. Thus, the liquidity costs associated with

a transaction are manifested in the optimal trading strategy as inputs. However, in economic

terms, imposing the constraint that the replicating portfolio’s value at maturity is at least as

much as the option’s payoff does not appear to result in significantly higher liquidity costs.

31



6.2 Summary of Empirical Results

First, liquidity costs are a significant component of an option’s price. These costs increase

quadratically with the imbalance in the number of short or long positions being hedged. Second,

the optimal hedging strategy provides similar and often reduced liquidity costs relative to the

Black-Scholes hedge, but has the advantage of avoiding negative approximation errors. Third,

liquidity risk is primarily generated by random transactions since the cost per transaction (a

function of α(t) · S(t, 0)) is relatively stable over time. In other words, conditional on a specified

transaction size, stochastic liquidity is not a serious concern. This property is a consequence of

α(t) and S(t, 0) exhibiting inverse fluctuations over time.

Finally, our fourth result finds that employing the Black Scholes hedge induces a relationship

between an option’s moneyness and the percentage impact of illiquidity. Specifically, in-the-

money options are subject to the lowest percentage impact from illiquidity, despite having the

largest dollar-denominated liquidity costs. This large dollar-denominated liquidity cost is par-

tially attributed to the high initial cost of forming the replicating portfolio as the option trader

is assumed to start with zero shares of the underlying stock. With in-the-money options, most of

hedge portfolio re-balancing occurs when the stock price decreases. Conversely, with the initial

cost of the option being relatively large, a correspondingly small percentage price increase is

incurred. However, for out-of-the-money options with low initial prices, the impact of illiquidity

is very significant despite a small dollar-denominated liquidity cost. As expected, at-the-money

options lie between these extremes.

Since the impact of illiquidity is related to an option’s moneyness, assuming a frictionless
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market yields biased implied Black Scholes volatilities when its associated hedging strategy is

implemented. In other words, conditional on an observed option price, ignoring liquidity costs is

tantamount to overestimating option prices, which implies implied volatilities are overestimated

as a consequence. The extent of this bias depends on the strike price.

Table 6 reports implied volatilities for the two non-optimal Black Scholes hedge strategies,

while Figure 5 plots a “smile” over five different strike prices and two maturity dates (30 and

90 days). In Figure 5, σ and α are chosen to be 30% and 1.25×10−4 respectively as these are

representative parameter values. Furthermore, Figure 5 considers the replication of 25 options

using a discrete Black Scholes strategy implemented every two days (with nearly identical results

for its random time counterpart). With the Black Scholes implied volatilities computed under

the assumption of a perfectly liquid market (α = 0) for the underlying asset, while option prices

are increased by the liquidity cost associated with their replication, an upward bias in implied

volatilities is detected. Moreover, the only source of this upward bias is the liquidity cost of

replicating the option. Both Table 6 and Figure 5 indicate that illiquidity causes the implied

volatility of in-the-money options to have the largest upward bias.24

However, it is important to emphasize that illiquidity is not the exclusive catalyst for hav-

ing implied volatilities depend on strike prices. Other alternatives include jumps and stochastic

volatility as well as feedback effects from a trader with a large stock or option position. Nonethe-

less, unless our optimal hedging strategy is implemented, liquidity costs may be partially respon-

sible for generating the implied volatility “smile” documented by Rubinstein (1985).
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7 Conclusion

This paper represents the first attempt to consider the impact of illiquidity in the underlying

asset market on option pricing. Consequently, this paper serves to link the market microstructure

and option pricing literatures.

An extended Black Scholes economy is utilized to illustrate the theory and provide initial

estimates for the impact of illiquidity on option prices. Liquidity costs are modeled as a stochastic

supply curve with the underlying asset price depending on order flow. Consistent with the market

microstructure literature, purchases are executed at higher prices while sales are executed at lower

prices.

In addition, optimal hedging strategies that super-replicate an option are derived by solving

a dynamic program. For comparative purposes, two non-optimal but intuitive discrete hedging

strategies are also implemented.

Empirical results document the importance of illiquidity to option pricing. In particular,

liquidity costs are a significant component of the option’s price, and increase quadratically in the

number of options being hedged. Second, the standard Black-Scholes hedging strategies often

have higher liquidity costs than the optimal hedging strategy, and admit the possibility that

the replicating portfolio is worth less than the option’s liability at maturity. Third, non-optimal

Black-Scholes hedges cause the impact of illiquidity to depend on the option’s moneyness, offering

another explanation for the implied volatility smile.
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Appendices

A Liquidity Cost of Black Scholes Hedge

The liquidity cost of the Black Scholes hedge is

LT = X0(S(0, X0) − S(0, 0)) +

∫ T

0

αsud[N(h), N(h)]cu

= X0(S(0, X0) − S(0, 0)) +

∫ T

0

αsu (N ′ (hu))
2
d [h, h]cu

= X0(S(0, X0) − S(0, 0)) +

∫ T

0

αsu (N ′ (hu))
2 1

s2
uσ

2 (T − u)
d [s, s]u

= X0(S(0, X0) − S(0, 0)) +

∫ T

0

α (N ′ (hu))
2

σ2su(T − u)
σ2s2

udu

= X0(S(0, X0) − S(0, 0)) +

∫ T

0

α (N ′ (hu))
2 su

T − u
du . (35)

B Dynamic Programming Details

The dynamic programming technique is a two-stage process. First, self-financing trading strate-

gies that minimize the terminal deficit, as in equation (36) below are found. The second step

then selects the hedge with the lowest initial cost from the previous set of strategies. A recursive

technique is introduced to solve the super-replication problem. Let

J(x, y) = min
X∈X (x,y)

E [max{CT − ZT , 0}] , (36)

where X (x, y) is the set of s.f.t.s. whose initial value are X0 = x and Y0 = y. Thus, J(x, y) is the

minimum expected terminal deficit starting with an initial position (x, y). Clearly, J(x, y) = 0

for sufficiently large values of x and y since such initial positions ensure the contingent claim is
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hedged. Thus, the following expression is well defined25

z∗ = min{y + xS(0, 0) : J(x, y) = 0} . (37)

The above is the minimal super-replication price for hedging the contingent claim. Thus, finding

the minimal super-replication price is a two-step procedure. First, J(x, y) is calculated for all

x, y. Then, the price y + xS(0, 0) is minimized over all x, y such that J(x, y) = 0. Note that

the expected terminal deficit of a s.f.t.s. is zero if and only if the strategy super-replicates the

claim. In addition, to uniquely identify (x, y) from the minimization procedure, the self-financing

condition is required.

For notational simplicity, let T = ∆ · M for some M > 0 representing the total number of

trades. To apply the recursive algorithm, define for t ∈ {n · ∆ : n ∈ {0, . . . , M}} ,

Jt(x, y, S(t, 0)) = min
X∈Xt(x,y)

Et [max{CT − ZT , 0}] , (38)

where Xt(x, y) is the set of s.f.t.s. with Xt = x and Yt = y. For simplicity, T − n represents

t = ∆ · (M − n) throughout the remainder of this appendix. Consider the boundary condition,

JT (x, y, S(T, 0)) = max{CT − y − xS(T, 0), 0} , (39)

at time T where x and y are the positions in the stock and money market at T as defined after

equation (38). The following is the recursive relation between time t and t + 1:

Jt(x, y, S(t, 0)) = min
∆x

Et [Jt+1(x + ∆x, y −∆xS(t, ∆x), S(t + 1, 0))] . (40)

Intuitively, x shares in the stock and y shares in the money market account at time t is equivalent

to having x +∆x shares and y−∆xS(t, ∆x) in the money market (implied by the self-financing

condition) at time t + 1 for an arbitrary transaction size ∆x.
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The first order condition for the minimization problem in (40) is given by

Et

[
∂Jt+1

∂x
(x + ∆x, y − ∆xS(t, ∆x), S(t + 1, 0))

]

= Et

[
∂Jt+1

∂y
(x + ∆x, y − ∆xS(t, ∆x), S(t + 1, 0))

(
d

d∆x
(∆xS(t, ∆x))

)]
. (41)

Equation (41) states that the change in the value of the stock position equals, on average, the

marginal cost of executing the transaction scaled by the sensitivity of the value function to

movements in the money market account. The marginal cost of executing the transaction is

d
d∆x

(∆xS(t, ∆x)) while the scaling factor equals ∂Jt+1

∂y
(x + ∆x, y − ∆xS (t, ∆x), S(t + 1, 0)).

B.1 Binomial Implementation of Dynamic Program

Recall that the self-financing condition at time t implies26

yt − yt−1 = −(xt − xt−1)S(t− 1, xt − xt−1) (42)

= −(xt − xt−1)S(t− 1, 0) − (xt − xt−1)[S(t− 1, xt − xt−1) − S(t− 1, 0)] . (43)

Thus, for each t, we have

Zt−1 = xt−1S(t − 1, 0) + yt−1 (44)

= xtS(t− 1, 0) + yt + (xt − xt−1) [S(t − 1, xt − xt−1) − S(t − 1, 0)] .

Recall that xt is Ft−1-measurable along with yt according to the self-financing condition. Pro-

ceeding backwards from time T − 1,

minZT−1 = yT + xTS(T − 1, 0) + (xT − xT−1) [S(T − 1, xT − xT−1) − S(T − 1, 0)] ,
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such that ZT ≥ CT . Observe that liquidity costs are minimized in the above formulation subject

to the approximation errors being non-negative. Invoking the binomial approximation with

S(T, 0) being either S(T − 1, 0)U or S(T − 1, 0)D, xT and yT should satisfy

yT + xT S(T − 1, 0)U ≥ (S(T − 1, 0)U −K)+ (45)

yT + xTS(T − 1, 0)D ≥ (S(T − 1, 0)D − K)+ . (46)

Since U and D are constants, xT and yT are FT−1-measurable as required. Among all values of

xT and yT satisfying the above inequalities, the optimal values minimize yT + xTS(T − 1, 0) +

(xT − xT−1) [S(T − 1, xT − xT−1) − S(T − 1, 0)]. Denote the optimal solution as

x∗
T (S(T − 1, 0), xT−1, yT−1) . (47)

At time T − 2 the super-replication problem becomes

minZT−2 = xT−1S(T − 2, 0) + yT−1 + (xT−1 − xT−2)[S(T − 2, xT−1 − xT−2) − S(T − 2, 0)] ,

such that ZT ≥ CT which is equivalent to

min yT−1 + xT−1S(T − 2, 0) + (xT−1 − xT−2) [S(T − 2, xT−1 − xT−2) − S(T − 2, 0)]

s.t. yT−2 + xT−2S(T − 2, 0) − (xT−1 − xT−2) [S(T − 2, xT−1 − xT−2) − S(T − 2, 0)]

+xT−1 [S(T − 1, 0) − S(T − 2, 0)]

= y∗
T + x∗

T S(T − 1, 0) + (x∗
T − xT−1) [S(T − 1, x∗

T − xT−1) − S(T − 1, 0)] . (48)

In the above, dependency of x∗
T and y∗

T on S(T − 1, 0), xT−1 and yT−1 is implicit. Thus, we

begin at time T − 2 to end at T − 1 with the optimal allocation in the stock and bond which
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is capable of super-replicating the claim at time T . The expression in equation (48) equals

yT−1 + xT−1S(T − 2, 0). Thus, the minimization problem becomes

min yT−1 + xT−1S(T − 2, 0) + (xT−1 − xT−2) [S(T − 2, xT−1 − xT−2) − S(T − 2, 0)](49)

s.t. yT−1 + xT−1S(T − 2, 0) + xT−1 [S(T − 1, 0) − S(T − 2, 0)]

= y∗
T + x∗

TS(T − 1, 0) + (x∗
T − xT−1) [S(T − 1, x∗

T − xT−1) − S(T − 1, 0)] .

The method continues until time 0. For any t < T , super-replication requires finding xt and yt

that minimize

yt + xtS(t − 1, 0) + (xt − xt−1) [S(t− 1, xt − xt−1) − S(t − 1, 0)] , (50)

subject to the constraint

yt + xtS(t− 1, 0) + xt [S(t, 0) − S(t− 1, 0)] (51)

= y∗
t+1 + x∗

t+1S(t, 0) + (x∗
t+1 − xt)

[
S(t, x∗

t+1 − xt) − S(t, 0)
]

,

given x∗
t+1 from the previous solution.
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Footnotes

1. Two other risks are often discussed in the literature; operational and model risk. However,

since these risks are due to the legal system and model usage respectively, they may be

considered non-financial.

2. This notion of liquidity risk is valid even if the cost per transaction is stable over time since

the sign and size of transactions generated by the hedge strategy remain functions of the

random stock price.

3. Chen, Stanzl and Watanabe (2001) examine the impact of illiquidity on the price of sub-

sequent transactions, but not the price impact of trades within the context of a coherent

mathematical model. By means of a statistical analysis, Lillo, Farmer and Mantegna (2002)

also construct a supply curve without a mathematical model.

4. These trading strategies have been previously studied by Cheridito (2003) in the context

of fractional Brownian motions.

5. As a consequence, our model is not appropriate for applications involving the liquidation

or acquisition of large positions in the stock relative to the number of outstanding shares.

6. Xt and Yt are predictable and optional processes, respectively.

7. Here, H(t, ω) is a predictable process and τ is a predictable (Ft : 0 ≤ t ≤ T ) stopping time.

8. The space L2(dQ) is the set of FT− measurable random variables that are square integrable

using the probability measure Q.
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9. Both LT and Y n
T are already normalized by the value of the money market account.

10. An integral of a continuous function with respect to the Lebesgue measure is of bounded

variation and continuous.

11. Subsequent research by Blais and Protter (2005) provides additional support for the linear

supply curve structure given in expression (15) below for liquid stocks. Our stocks, with

options trading on the CBOE, would fall into this category. For illiquid stocks, the supply

curve appears to be piecewise linear but with stochastic slopes and a jump discontinuity

at zero.

12. In reality, there may exist economies of scale for option pricing since replication costs are

not linear in the number of underlying contracts.

13. The function sgn(x) is defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if x > 0

0 if x = 0 .

−1 if x < 0

14. For brevity, detailed tables containing the results are unreported but available upon request.

15. Dramatic evidence of this property is found around stock splits. Note that α expresses

illiquidity in percentage terms while LT is a dollar-denominated quantity.

16. Since ZT = YT + xTS(T, 0), the same principle applies at time T with xT being non-zero.

17. Since the liquidity cost for the optimal hedge strategy declines with more frequent trading,

in theory, ∆ would be reduced by an infinitely powerful computer until it reached the lower
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bound δ, while in practice, the option price converges (to two decimal places) for ∆ > δ.

To clarify, ∆ may be further divided into ∆H and ∆S, corresponding to the time interval

between hedge portfolio rebalancings and stock price movements respectively. This enables

∆S → 0 ( decline below δ), producing a geometric Brownian motion as in our comparative

study of non-optimal hedging strategies. However, with regards to our optimal trading

strategy in this section, ∆H = ∆S, and there is no distinction.

18. The trading strategy in equation (10) is not implemented as it is continuous and of finite

variation by design.

19. Bloomberg implied volatilities are computed using closing prices of three options which are

closest to being at-the-money (across possible maturities). Closing prices are the bid (ask)

if the last transaction is below (above) the bid (ask) or the transaction price itself if it lies

between the option’s bid-ask spread.

20. Justification for these values follows from plotting the distribution of absolute transactions

(unsigned order flow) although some dependence on the strike price is detected.

21. As a consequence of the numerical grid, a minimum distance between trades is enforced in

the random time non-optimal hedging approach, although a Brownian motion process may

generate xu − xt values that exceed θ > 0 for u − t < δ in theory.

22. Note that the optimal hedge need not produce lower liquidity costs than the non-optimal

strategies which are not constrained to produce non-negative approximation errors.
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23. The slightly smaller liquidity costs for the two day non-optimal fixed time hedge strategy,

versus its one day counterpart, result from being able to avoid certain intermediate trans-

actions. For example, an increase (decrease) in the geometric Brownian motion process

followed by a decrease (increase) to a similar level implies an intermediate transaction may

be ignored (at least reduced) by the non-optimal strategy with a larger ∆. This does

not contradict Lemma 1 which applies to optimal hedge strategies that super-replicate the

option as discussed after its proof.

24. It is inappropriate to infer implied volatilities for the optimal trading strategy using the

Black Scholes formula. Indeed, if the marketplace was aware of the optimal strategy,

then the Black Scholes formula would not be utilized to compute prices or infer implied

volatilities. Instead, obtaining an implied volatility for the optimal strategy requires an

iterative procedure that involves the dynamic program. In addition, the binomial structure

underlying the dynamic program requires smaller time intervals to ensure the corresponding

option prices have converged. Otherwise, their values may be below those computed using

the Black Scholes model as a result of the numerical approximation.

25. To clarify, x and y in equation (37) are not equal to x1 and y1 respectively in Section 4.

Instead, they refer to positions before the initial trade. Thus, y in equation (37) equals

x1S(0, 0) + y1 + αS(0, 0)x2
1 and x = 0.

26. The only change in the portfolio holdings during the interval (t − 1, t] occurs right after

time t − 1.

46



Figure 1: Plot of estimated α parameters each day of sample period from January 3, 1995 to

December 31, 1998 based on equation (15) for IBM, Federal Express (FDX) and Barnes & Noble

(BKS). The dotted line denotes the average daily stock price of the firm. These three companies

represent high, medium, and low liquidity firms with respect to NYSE stocks that have traded

CBOE options.
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Figure 2: Plot of estimated α parameters each day of sample period from January 3, 1995 to

December 31, 1998 based on equation (15) for GE and Reebok (RBK). The dotted line denotes

the average daily stock price of the firm. Note the inverse relationship between α and S(t, 0).
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Figure 3: Plot of the product α(t) · S(t, 0) each day of sample period from January 3, 1995 to

December 31, 1998 for IBM, FDX and BKS. The value of S(t, 0) is the average stock price on a

particular date according to transactions in the TAQ database.
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Figure 4: Plot of the product α(t) · S(t, 0) each day of sample period from January 3, 1995

to December 31, 1998 for GE and RBK. The value of S(t, 0) is the average stock price on a

particular date according to transactions in the TAQ database.
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Figure 5: Plots of the implied volatility across five different strike prices and two distinct ma-

turities when 25 options (each on 100 shares) are replicated. The plots above correspond to a

representative stock with a current price of $50 whose underlying volatility is 30% per annum. In

$5 increments, the strike price ranges from $40 to $60 (in-the-money to out-of-the-money) while

maturities of 30 and 90 days are considered. The α parameter is 1.25 ×10−4 per lot transacted

while the trading strategy consists of implementing the Black Scholes hedge parameters at fixed

time intervals of ∆ = 2 days. The disparity between the 30% volatility and those implied from

option prices is the result of illiquidity. Specifically, the Black Scholes implied volatilities are

computed under the assumption of a perfectly liquid market (α = 0) for the underlying asset,

while option prices are increased by the liquidity cost of their replication. Consequently, higher

option prices induced by illiquidity generate an upward bias in their implied volatilities.

51



T
ab

le
1:

S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

th
e

d
ai

ly
p
ar

am
et

er
es

ti
m

at
es

of
α

(i
n

lo
ts

)
an

d
µ

ge
n
er

at
ed

b
y

th
e

re
gr

es
si

on
m

o
d
el

in
eq

u
at

io
n

(1
5)

fo
r

ea
ch

of
th

e
fi
v
e

fi
rm

s.
T

h
e

se
co

n
d

co
lu

m
n

re
co

rd
s

th
e

av
er

ag
e

n
u
m

b
er

of
d
ai

ly
tr

an
sa

ct
io

n
s

av
ai

la
b
le

.
U

n
d
er

ea
ch

of
th

e
α

su
m

m
ar

y
st

at
is

ti
cs

is
th

ei
r

st
an

d
ar

d
er

ro
r.

T
h
e

n
in

th
an

d
te

n
th

co
lu

m
n
s

d
et

ai
l
th

e
n
u
m

b
er

of
d
ay

s
fo

r
w

h
ic

h
th

e
p
ar

am
et

er
es

ti
m

at
es

ar
e

si
gn

ifi
ca

n
t

at
th

e
5%

le
v
el

,
al

on
g

w
it

h
th

e
co

rr
es

p
on

d
in

g
p
er

ce
n
ta

ge
re

la
ti

v
e

to
th

e
1,

01
1

d
ay

sa
m

p
le

p
er

io
d
.

T
h
e

la
st

tw
o

co
lu

m
n
s

re
co

rd
th

e
av

er
ag

e
st

oc
k

p
ri

ce
an

d
im

p
li
ed

v
ol

at
il
it
y

of
ea

ch
fi
rm

d
u
ri

n
g

th
e

sa
m

p
le

p
er

io
d
.

C
om

pa
ny

M
ea

n
P
ar

am
et

er
1s

t
M

ed
ia

n
99

th
M

ea
n

St
an

da
rd

5%
L
ev

el
5%

L
ev

el
St

oc
k

V
ol

at
ili

ty
T

ic
ke

r
n

P
er

ce
nt

ile
P
er

ce
nt

ile
D

ev
ia

ti
on

D
ay

s
P
er

ce
nt

ag
e

P
ri

ce
(a

nn
ua

l)

G
E

1,
06

1
α̂
×

10
−

4
0.

20
0.

44
1.

63
0.

59
0.

38
1,

01
1

99
.9

9
$7

5
23

.2
5%

S
E

×
10

−
4

0.
01

2
0.

05
0

0.
10

6
0.

06
1

0.
03

8
-

-
µ̂
×

10
−

7
-3

3.
96

-3
.6

2
13

.0
3

-4
.3

4
9.

08
24

2.
37

IB
M

65
6

α̂
×

10
−

4
0.

06
0.

17
0.

43
0.

19
0.

08
99

8
98

.7
1

$1
15

30
.9

3%
S
E

×
10

−
4

0.
01

8
0.

03
3

0.
09

4
0.

03
7

0.
01

6
-

-
µ̂
×

10
−

7
-2

6.
22

-2
.8

1
13

.7
6

-3
.7

1
7.

93
31

3.
07

F
D

X
24

9
α̂
×

10
−

4
0.

15
0.

53
1.

32
0.

56
0.

21
97

1
96

.0
4

$6
5

28
.4

1%
S
E

×
10

−
4

0.
05

1
0.

13
7

0.
31

1
0.

14
3

0.
06

3
-

-
µ̂
×

10
−

7
-1

3.
12

-0
.6

1
10

.9
0

-0
.6

6
4.

83
50

4.
95

B
K

S
31

8
α̂
×

10
−

4
0.

34
1.

18
2.

84
1.

28
0.

50
96

2
95

.1
5

$3
5

37
.3

9%
S
E

×
10

−
4

0.
09

9
0.

26
3

0.
82

8
0.

30
6

0.
16

3
-

-
µ̂
×

10
−

7
-3

0.
46

-0
.7

3
14

.5
8

-1
.4

1
7.

56
46

4.
55

R
B

K
15

9
α̂
×

10
−

4
0.

11
0.

99
2.

50
1.

08
5.

00
95

7
94

.6
6

$3
5

36
.2

2%
S
E

×
10

−
4

0.
15

2
0.

27
8

0.
68

4
0.

31
7

0.
11

9
-

-
µ̂
×

10
−

7
-2

3.
26

-2
.7

0
14

.2
4

-3
.0

9
7.

01
25

2.
47



T
ab

le
2:

S
u
m

m
ar

y
of

or
d
er

fl
ow

an
d

tr
an

sa
ct

io
n

p
ri

ce
s.

R
ec

or
d
ed

b
el

ow
ar

e
th

e
re

la
ti

on
sh

ip
s

b
et

w
ee

n
co

n
se

cu
ti

v
e

tr
an

sa
ct

io
n

p
ri

ce
s
as

a
fu

n
ct

io
n

of
or

d
er

fl
ow

.
T

h
e

fi
rs

t
tw

o
ro

w
s
im

p
os

e
n
o

co
n
st

ra
in

ts
on

th
e

m
ag

n
it

u
d
e

of
th

e
tr

an
sa

ct
io

n
.

T
h
e

n
ex

t
fo

u
r

ro
w

s
h
av

e
sm

al
l
(l

ar
ge

)
tr

ad
es

d
efi

n
ed

as
th

os
e

le
ss

th
an

or
eq

u
al

to
(g

re
at

er
th

an
)

10
lo

ts
.

N
ot

e
th

at
la

rg
e

tr
ad

es
ar

e
n
ot

in
cl

u
d
ed

in
ou

r
su

b
se

q
u
en

t
es

ti
m

at
io

n
p
ro

ce
d
u
re

fo
r

α
as

th
es

e
tr

an
sa

ct
io

n
s

ar
e

d
ee

m
ed

ir
re

le
va

n
t

fo
r

th
e

p
u
rp

os
es

of
fr

eq
u
en

t
h
ed

gi
n
g.

T
ra

d
e

T
y
p
e

an
d

H
y
p
ot

h
es

is
C

om
p
an

y
T

ic
k
er

F
ir

st
T
ra

d
e

(x
1
)

S
ec

on
d

T
ra

d
e

(x
2
)

T
ra

n
sa

ct
io

n
P

ri
ce

H
y
p
ot

h
es

is
G

E
IB

M
F
D

X
B

K
S

R
B

K

S
el

l
B

u
y

S
(t

1
,x

1
)
≤

S
(t

2
,x

2
)

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

B
u
y

S
el

l
S

(t
1
,x

1
)
≥

S
(t

2
,x

2
)

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

S
m

al
l
B

u
y

L
ar

ge
B

u
y

S
(t

1
,x

1
)
≤

S
(t

2
,x

2
)

98
.7

7%
98

.5
8%

98
.4

6%
98

.5
8%

99
.0

5%

S
m

al
l
S
el

l
L
ar

ge
S
el

l
S

(t
1
,x

1
)
≥

S
(t

2
,x

2
)

98
.1

0%
97

.9
9%

98
.6

1%
98

.4
3%

98
.9

5%

L
ar

ge
B

u
y

S
m

al
l
B

u
y

S
(t

1
,x

1
)
≥

S
(t

2
,x

2
)

93
.6

0%
90

.2
8%

80
.5

9%
80

.5
3%

83
.8

8%

L
ar

ge
S
el

l
S
m

al
l
S
el

l
S

(t
1
,x

1
)
≤

S
(t

2
,x

2
)

90
.3

3%
87

.3
3%

78
.8

7%
78

.6
7%

81
.8

9%



T
ab

le
3:

S
u
m

m
ar

y
of

op
ti

m
al

tr
ad

in
g

st
ra

te
gy

fo
r

10
op

ti
on

s,
ea

ch
on

10
0

sh
ar

es
.

O
p
ti

on
p
ri

ce
s

in
th

e
th

ir
d

an
d

fo
u
rt

h
co

lu
m

n
s
ar

e
re

p
or

te
d

fo
r

an
in

d
iv

id
u
al

op
ti

on
on

10
0

sh
ar

es
w

it
h

th
e

ot
h
er

en
tr

ie
s
re

p
re

se
n
ti

n
g

q
u
an

ti
ti

es
fo

r
an

im
b
al

an
ce

of
10

op
ti

on
s.

F
or

em
p
h
as

is
,
u
n
li
k
e

op
ti

on
p
ri

ce
s,

th
e

li
q
u
id

it
y

co
st

is
n
ot

li
n
ea

r
in

th
e

n
u
m

b
er

of
op

ti
on

s
(o

r
sh

ar
es

)
u
n
d
er

co
n
si

d
er

at
io

n
an

d
is

n
ot

re
sc

al
ed

as
a

co
n
se

q
u
en

ce
.

F
or

at
-t

h
e-

m
on

ey
op

ti
on

s,
th

e
st

ri
k
e

p
ri

ce
eq

u
al

s
th

e
in

it
ia

l
st

o
ck

p
ri

ce
re

co
rd

ed
in

T
ab

le
1.

T
h
e

st
o
ck

p
ri

ce
is

th
en

in
cr

ea
se

d
(d

ec
re

as
ed

)
b
y

$5
fo

r
in

-t
h
e-

m
on

ey
(o

u
t-

of
-t

h
e-

m
on

ey
)

op
ti

on
s.

T
h
e

v
ol

at
il
it
y

p
ar

am
et

er
is

al
so

fo
u
n
d

in
T
ab

le
1.

T
h
e

fi
rs

t
op

ti
on

p
ri

ce
x

0 1
S

(0
,0

)
+

y
0 1

u
ti

li
ze

s
h
ed

ge
p
ar

am
et

er
s

x
0 1

an
d

y
0 1

th
at

ar
e

so
lv

ed
fr

om
a

d
y
n
am

ic
p
ro

gr
am

w
it

h
α

=
0.

T
h
is

“f
ri

ct
io

n
le

ss
”

op
ti

on
p
ri

ce
p
ro

x
y

se
rv

es
as

th
e

b
as

is
fo

r
th

e
p
er

ce
n
ta

ge
im

p
ac

t
of

il
li
q
u
id

it
y.

T
h
e

se
co

n
d

re
p
or

te
d

op
ti

on
p
ri

ce
in

cl
u
d
es

th
e

li
q
u
id

it
y

co
st

at
ti

m
e

ze
ro

of
fo

rm
in

g
th

e
re

p
li
ca

ti
n
g

p
or

tf
ol

io
,
α
S

(0
,0

)x
2 1
,
w

it
h

x
1

an
d

y 1
co

m
p
u
te

d
fo

r
an

ec
on

om
y

w
it

h
α

>
0.

H
en

ce
,
th

e
va

lu
es

x
1

v
er

su
s
x

0 1
an

d
y 1

v
er

su
s

y
0 1

ar
e

n
ot

co
m

p
ar

ab
le

.
A

ft
er

ti
m

e
ze

ro
,
w

e
in

fe
r

an
im

p
li
ed

li
q
u
id

it
y

co
st

u
si

n
g

th
e

op
ti

m
al

tr
an

sa
ct

io
n
s

at
ea

ch
n
o
d
e

of
th

e
b
in

om
ia

l
p
ro

ce
d
u
re

fo
r

co
m

p
ar

is
on

w
it

h
th

e
ap

p
ro

x
im

at
e

li
q
u
id

it
y

co
st

.
T

h
e

la
st

co
lu

m
n

is
th

e
ap

p
ro

x
im

at
e

li
q
u
id

it
y

co
st

in
eq

u
at

io
n

(2
3)

fo
r

tr
an

sa
ct

io
n
s

af
te

r
ti

m
e

ze
ro

.

O
p
ti

o
n

C
h
a
ra

ct
er

is
ti

cs
In

d
iv

id
u
a
l
O

p
ti

o
n

C
o
st

s
A

ss
o
ci

a
te

d
w

it
h

R
ep

li
ca

ti
n
g

P
o
rt

fo
li
o

fo
r

1
0

O
p
ti

o
n
s

C
o
m

p
a
n
y

O
p
ti

o
n

O
p
ti

o
n

P
ri

ce
O

p
ti

o
n

P
ri

ce
L
iq

u
id

it
y

C
o
st

L
iq

u
id

it
y

C
o
st

T
o
ta

l
P
er

ce
n
ta

g
e

E
x
ce

ss
A

p
p
ro

x
im

a
te

(a
ft

er
t=

0
)

N
a
m

e
M

o
n
ey

n
es

s
w

it
h

α
=

0
w

it
h

α
S
(0

,0
)x

2 1
(a

t
t
=

0
)

(a
ft

er
t
=

0
)

L
iq

u
id

it
y

C
o
st

Im
p
a
ct

a
t

T
L
iq

u
id

it
y

C
o
st

G
E

In
5
4
8
.9

1
5
5
1
.4

0
1
9
.3

1
5
.7

7
2
5
.0

8
0
.4

6
0
.0

0
5
.7

9

A
t

1
7
7
.9

4
1
8
0
.2

0
9
.5

9
1
0
.0

6
1
9
.6

5
1
.1

0
0
.0

0
1
0
.0

8

O
u
t

4
6
.9

4
4
7
.1

1
0
.8

6
0
.8

2
1
.6

8
0
.3

6
0
.0

0
0
.8

3

IB
M

In
7
3
0
.5

6
7
3
1
.4

2
8
.6

1
3
.4

6
1
2
.0

7
0
.1

7
0
.0

0
3
.4

7

A
t

3
6
2
.9

1
3
6
4
.0

4
4
.8

1
4
.4

6
9
.2

7
0
.2

6
0
.0

0
4
.4

8

O
u
t

2
2
9
.9

0
2
3
0
.3

7
2
.4

4
2
.2

9
4
.7

3
0
.2

1
0
.0

0
2
.3

0

F
D

X
In

5
6
2
.4

2
5
2
7
.9

9
1
5
.7

0
4
.9

6
2
0
.6

6
0
.3

7
0
.0

0
4
.9

8

A
t

1
8
8
.4

2
1
9
0
.2

9
8
.4

6
8
.0

9
1
6
.5

5
0
.8

8
0
.0

0
8
.1

2

O
u
t

5
6
.0

7
5
6
.2

5
0
.9

2
0
.8

7
1
.7

9
0
.3

2
0
.0

0
0
.8

8

B
K

S
In

5
1
7
.8

7
5
2
0
.2

1
2
3
.3

9
4
.5

2
2
7
.9

1
0
.5

4
0
.0

0
4
.5

4

A
t

1
3
3
.5

0
1
3
5
.8

2
1
1
.0

7
1
0
.1

8
2
1
.2

5
1
.5

9
0
.0

0
1
0
.2

5

O
u
t

1
2
.2

5
1
2
.2

8
0
.1

2
0
.1

1
0
.2

3
0
.1

9
0
.0

0
0
.1

1

R
B

K
In

5
1
3
.4

0
5
1
5
.4

0
2
0
.0

2
3
.6

7
2
3
.6

9
0
.4

6
0
.0

0
3
.6

9

A
t

1
2
9
.3

3
1
3
1
.2

9
9
.1

6
8
.4

4
1
7
.6

0
1
.3

6
0
.0

0
8
.4

9

O
u
t

8
.3

6
8
.3

7
0
.0

5
0
.0

5
0
.1

0
0
.1

2
0
.0

0
0
.0

5



T
ab

le
4:

S
u
m

m
ar

y
of

h
ed

gi
n
g

st
ra

te
gy

at
fi
x
ed

ti
m

e
p
oi

n
ts

w
it

h
ra

n
d
om

q
u
an

ti
ti

es
fo

r
10

op
ti

on
s,

ea
ch

on
10

0
sh

ar
es

.
O

p
ti

on
p
ri

ce
s

b
el

ow
ar

e
re

p
or

te
d

fo
r

an
in

d
iv

id
u
al

op
ti

on
on

10
0

sh
ar

es
w

it
h

th
e

ot
h
er

en
tr

ie
s

re
p
re

se
n
ti

n
g

q
u
an

ti
ti

es
fo

r
an

im
b
al

an
ce

of
10

op
ti

on
s.

F
or

em
p
h
as

is
,
u
n
li
k
e

op
ti

on
p
ri

ce
s,

th
e

li
q
u
id

it
y

co
st

is
n
ot

li
n
ea

r
in

th
e

n
u
m

b
er

of
op

ti
on

s
(o

r
sh

ar
es

)
u
n
d
er

co
n
si

d
er

at
io

n
.

T
h
is

st
ra

te
gy

co
n
si

st
s

of
h
ed

gi
n
g

th
e

op
ti

on
s

at
p
re

d
et

er
m

in
ed

d
is

cr
et

e
ti

m
e

p
oi

n
ts

u
si

n
g

B
la

ck
S
ch

ol
es

h
ed

ge
p
ar

am
et

er
s

w
it

h
th

e
st

o
ck

p
ri

ce
ev

ol
v
in

g
as

a
ge

om
et

ri
c

B
ro

w
n
ia

n
m

ot
io

n
.

T
h
e

li
q
u
id

it
y

co
st

an
d

ap
p
ro

x
im

at
io

n
er

ro
r

ar
e

re
co

rd
ed

b
el

ow
al

on
g

w
it

h
th

ei
r
p
er

ce
n
ta

ge
im

p
ac

t
on

th
e

op
ti

on
p
ri

ce
.

F
or

at
-t

h
e-

m
on

ey
op

ti
on

s,
th

e
st

ri
k
e

p
ri

ce
eq

u
al

s
th

e
in

it
ia

l
st

o
ck

p
ri

ce
re

co
rd

ed
in

T
ab

le
1.

T
h
e

st
o
ck

p
ri

ce
is

th
en

in
cr

ea
se

d
(d

ec
re

as
ed

)
b
y

$5
fo

r
in

-t
h
e-

m
on

ey
(o

u
t-

of
-t

h
e-

m
on

ey
)

op
ti

on
s.

T
h
e

v
ol

at
il
it
y

p
ar

am
et

er
is

al
so

fo
u
n
d

in
T
ab

le
1.

T
h
e

fi
ft

h
co

lu
m

n
w

h
ic

h
st

at
es

th
e

co
m

b
in

ed
fr

ic
ti

on
le

ss
op

ti
on

p
ri

ce
w

it
h

it
s

as
so

ci
at

ed
li
q
u
id

it
y

co
st

is
fo

r
ea

se
of

re
fe

re
n
ce

,
an

d
d
iv

id
es

th
e

to
ta

l
li
q
u
id

it
y

co
st

ac
ro

ss
th

e
10

op
ti

on
s.

H
ow

ev
er

,
as

se
en

in
eq

u
at

io
n

(1
6)

,
li
q
u
id

it
y

co
st

s
in

cr
ea

se
q
u
ad

ra
ti

ca
ll
y

w
it

h
th

e
n
u
m

b
er

of
op

ti
on

s
h
ed

ge
d

w
h
il
e

th
e

p
ri

ce
in

cr
ea

se
s

at
a

li
n
ea

r
ra

te
.

T
h
u
s,

th
e

fi
gu

re
s

b
el

ow
ar

e
n
ot

d
ir

ec
tl

y
co

m
p
ar

ab
le

w
it

h
th

os
e

in
T
ab

le
3

b
u
t

ar
e

p
ro

v
id

ed
fo

r
il
lu

st
ra

ti
on

.

O
p
ti

o
n

C
h
a
ra

ct
er

is
ti

cs
In

d
iv

id
u
a
l
O

p
ti

o
n

H
ed

g
in

g
E

rr
o
r

(1
0

o
p
ti

o
n
s)

A
p
p
ro

x
im

a
te

L
iq

u
id

it
y

C
o
m

p
a
n
y

O
p
ti

o
n

H
ed

g
in

g
B

la
ck

W
it

h
L
iq

u
id

it
y

A
p
p
ro

x
im

a
ti

o
n

L
iq

u
id

it
y

L
iq

u
id

it
y

L
iq

u
id

it
y

N
a
m

e
M

o
n
ey

n
es

s
F
re

q
u
en

cy
S
ch

o
le

s
L
iq

u
id

it
y

C
o
st

E
rr

o
r

%
C

o
st

%

G
E

In
∆

=
2

d
a
y
s

5
4
6
.5

6
5
5
0
.2

9
3
7
.3

1
3
8
.1

6
0
.6

8
3
8
.2

4
0
.7

0
∆

=
1

d
a
y

5
4
6
.5

6
5
5
0
.3

4
3
7
.8

4
2
4
.3

2
0
.6

9
3
8
.5

4
0
.7

1
A

t
∆

=
2

d
a
y
s

2
0
0
.7

8
2
0
2
.6

8
1
8
.9

8
7
2
.9

2
0
.9

5
2
0
.1

2
1
.0

0
∆

=
1

d
a
y

2
0
0
.7

8
2
0
2
.8

0
2
0
.1

6
3
1
.9

4
1
.0

0
2
0
.9

3
1
.0

4
O

u
t

∆
=

2
d
a
y
s

3
8
.3

9
3
8
.8

4
4
.5

2
4
4
.0

6
1
.1

8
4
.9

0
1
.2

8
∆

=
1

d
a
y

3
8
.3

9
3
8
.9

2
5
.2

9
2
3
.0

1
1
.3

8
5
.5

1
1
.4

3

IB
M

In
∆

=
2

d
a
y
s

7
1
5
.0

1
7
1
6
.4

3
1
4
.2

3
1
3
1
.0

0
0
.2

0
1
4
.8

2
0
.2

1
∆

=
1

d
a
y

7
1
5
.0

1
7
1
6
.4

9
1
4
.7

5
5
8
.1

4
0
.2

1
1
5
.2

0
0
.2

1
A

t
∆

=
2

d
a
y
s

4
0
9
.5

0
4
1
0
.4

5
9
.4

7
1
4
4
.6

6
0
.2

3
9
.9

8
0
.2

4
∆

=
1

d
a
y

4
0
9
.5

0
4
1
0
.5

0
1
0
.0

4
6
7
.4

6
0
.2

5
1
0
.4

4
0
.2

5
O

u
t

∆
=

2
d
a
y
s

1
9
9
.2

0
1
9
9
.7

3
5
.2

7
1
2
6
.3

5
0
.2

6
5
.6

4
0
.2

8
∆

=
1

d
a
y

1
9
9
.2

0
1
9
9
.7

7
5
.7

2
6
1
.7

6
0
.2

9
5
.9

3
0
.3

0

F
D

X
In

∆
=

2
d
a
y
s

5
5
5
.1

6
5
5
8
.1

9
3
0
.3

4
4
8
.1

6
0
.5

5
3
1
.1

5
0
.5

6
∆

=
1

d
a
y

5
5
5
.1

6
5
5
8
.2

5
3
0
.8

9
2
7
.0

4
0
.5

6
3
1
.5

3
0
.5

7
A

t
∆

=
2

d
a
y
s

2
1
2
.6

1
2
1
4
.1

9
1
5
.8

2
6
8
.5

7
0
.7

4
1
6
.7

3
0
.7

9
∆

=
1

d
a
y

2
1
2
.6

1
2
1
4
.2

8
1
6
.6

7
3
4
.0

0
0
.7

8
1
7
.2

9
0
.8

1
O

u
t

∆
=

2
d
a
y
s

4
4
.6

4
4
5
.0

5
4
.1

1
4
2
.2

3
0
.9

2
4
.4

5
1
.0

0
∆

=
1

d
a
y

4
4
.6

4
4
5
.1

2
4
.7

6
2
1
.4

4
1
.0

7
4
.9

2
1
.1

0

B
K

S
In

∆
=

2
d
a
y
s

5
2
0
.9

6
5
2
5
.3

8
4
4
.2

3
2
1
.1

1
0
.8

5
4
5
.0

2
0
.8

6
∆

=
1

d
a
y

5
2
0
.9

6
5
2
5
.4

4
4
4
.7

8
1
4
.6

7
0
.8

6
4
5
.4

8
0
.8

7
A

t
∆

=
2

d
a
y
s

1
5
0
.6

4
1
5
2
.6

0
1
9
.6

2
5
1
.7

5
1
.3

0
2
0
.7

4
1
.3

8
∆

=
1

d
a
y

1
5
0
.6

4
1
5
2
.7

3
2
0
.8

5
2
1
.7

0
1
.3

8
2
1
.6

1
1
.4

3
O

u
t

∆
=

2
d
a
y
s

1
2
.0

4
1
2
.2

6
2
.1

5
1
8
.5

8
1
.7

9
2
.2

8
1
.9

0
∆

=
1

d
a
y

1
2
.0

4
1
2
.2

8
2
.4

3
8
.6

6
2
.0

2
2
.4

4
2
.0

3

R
B

K
In

∆
=

2
d
a
y
s

5
1
8
.6

8
5
2
2
.4

5
3
7
.7

0
1
7
.2

1
0
.7

3
3
8
.3

3
0
.7

4
∆

=
1

d
a
y

5
1
8
.6

8
5
2
2
.4

9
3
8
.0

9
1
2
.3

9
0
.7

3
3
8
.6

5
0
.7

5
A

t
∆

=
2

d
a
y
s

1
4
5
.9

3
1
4
7
.5

9
1
6
.5

9
4
8
.2

1
1
.1

4
1
7
.5

6
1
.2

0
∆

=
1

d
a
y

1
4
5
.9

3
1
4
7
.6

8
1
7
.5

2
2
4
.6

5
1
.2

0
1
8
.1

7
1
.2

4
O

u
t

∆
=

2
d
a
y
s

1
0
.5

2
1
0
.6

8
1
.6

4
1
2
.8

5
1
.5

6
1
.7

4
1
.6

6
∆

=
1

d
a
y

1
0
.5

2
1
0
.7

2
1
.9

5
6
.0

8
1
.8

5
1
.9

6
1
.8

6



T
ab

le
5:

S
u
m

m
ar

y
of

h
ed

gi
n
g

st
ra

te
gy

at
ra

n
d
om

ti
m

e
p
oi

n
ts

w
it

h
fi
x
ed

q
u
an

ti
ti

es
fo

r
10

op
ti

on
s,

ea
ch

on
10

0
sh

ar
es

.
O

p
ti

on
p
ri

ce
s

b
el

ow
ar

e
re

p
or

te
d

fo
r

an
in

d
iv

id
u
al

op
ti

on
on

10
0

sh
ar

es
w

it
h

th
e

ot
h
er

en
tr

ie
s

re
p
re

se
n
ti

n
g

q
u
an

ti
ti

es
fo

r
an

im
b
al

an
ce

of
10

op
ti

on
s.

F
or

em
p
h
as

is
,
u
n
li
k
e

op
ti

on
p
ri

ce
s,

th
e

li
q
u
id

it
y

co
st

is
n
ot

li
n
ea

r
in

th
e

n
u
m

b
er

of
op

ti
on

s
(o

r
sh

ar
es

)
u
n
d
er

co
n
si

d
er

at
io

n
.

T
h
is

st
ra

te
gy

co
n
si

st
s

of
h
ed

gi
n
g

th
e

op
ti

on
s

at
ra

n
d
om

ti
m

e
p
oi

n
ts

u
si

n
g

B
la

ck
S
ch

ol
es

h
ed

ge
p
ar

am
et

er
s

w
h
en

n
ee

d
ed

to
re

b
al

an
ce

th
e

re
p
li
ca

ti
n
g

p
or

tf
ol

io
.

T
h
e

st
o
ck

p
ri

ce
ev

ol
v
es

as
a

ge
om

et
ri

c
B

ro
w

n
ia

n
m

ot
io

n
.

T
h
e

li
q
u
id

it
y

co
st

an
d

ap
p
ro

x
im

at
io

n
er

ro
r

ar
e

re
co

rd
ed

b
el

ow
al

on
g

w
it

h
th

ei
r

p
er

ce
n
ta

ge
im

p
ac

t
on

th
e

op
ti

on
p
ri

ce
.

F
or

at
-t

h
e-

m
on

ey
op

ti
on

s,
th

e
st

ri
k
e

p
ri

ce
eq

u
al

s
th

e
in

it
ia

l
st

o
ck

p
ri

ce
re

co
rd

ed
in

T
ab

le
1.

T
h
e

st
o
ck

p
ri

ce
is

th
en

in
cr

ea
se

d
(d

ec
re

as
ed

)
b
y

$5
fo

r
in

-t
h
e-

m
on

ey
(o

u
t-

of
-t

h
e-

m
on

ey
)

op
ti

on
s.

T
h
e

v
ol

at
il
it
y

p
ar

am
et

er
is

al
so

fo
u
n
d

in
T
ab

le
1.

T
h
e

fi
ft

h
co

lu
m

n
w

h
ic

h
st

at
es

th
e

co
m

b
in

ed
fr

ic
ti

on
le

ss
op

ti
on

p
ri

ce
w

it
h

it
s

as
so

ci
at

ed
li
q
u
id

it
y

co
st

is
fo

r
ea

se
of

re
fe

re
n
ce

,
an

d
d
iv

id
es

th
e

to
ta

l
li
q
u
id

it
y

co
st

ac
ro

ss
th

e
10

op
ti

on
s.

H
ow

ev
er

,
as

se
en

in
eq

u
at

io
n

(1
6)

,
li
q
u
id

it
y

co
st

s
in

cr
ea

se
q
u
ad

ra
ti

ca
ll
y

w
it

h
th

e
n
u
m

b
er

of
op

ti
on

s
h
ed

ge
d

w
h
il
e

th
e

p
ri

ce
in

cr
ea

se
s
at

a
li
n
ea

r
ra

te
.

T
h
u
s,

th
e

fi
gu

re
s

b
el

ow
ar

e
n
ot

d
ir

ec
tl

y
co

m
p
ar

ab
le

w
it

h
th

os
e

in
T
ab

le
3

b
u
t

ar
e

p
ro

v
id

ed
fo

r
il
lu

st
ra

ti
on

.

O
p
ti

o
n

C
h
a
ra

ct
er

is
ti

cs
In

d
iv

id
u
a
l
O

p
ti

o
n

H
ed

g
in

g
E

rr
o
r

(1
0

o
p
ti

o
n
s)

A
p
p
ro

x
im

a
te

L
iq

u
id

it
y

C
o
m

p
a
n
y

O
p
ti

o
n

A
m

o
u
n
t

B
la

ck
W

it
h

L
iq

u
id

it
y

A
p
p
ro

x
im

a
ti

o
n

L
iq

u
id

it
y

L
iq

u
id

it
y

L
iq

u
id

it
y

N
a
m

e
M

o
n
ey

n
es

s
H

ed
g
ed

S
ch

o
le

s
L
iq

u
id

it
y

C
o
st

E
rr

o
r

%
C

o
st

%

G
E

In
θ

=
1
0

lo
ts

5
4
6
.5

6
5
5
0
.4

6
3
8
.9

6
3
.1

4
0
.7

1
3
9
.3

7
0
.7

2
θ

=
5

lo
ts

5
4
6
.5

6
5
5
0
.4

6
3
9
.0

3
1
.7

2
0
.7

1
3
9
.4

7
0
.7

2
A

t
θ

=
1
0

lo
ts

2
0
0
.7

8
2
0
2
.9

7
2
1
.9

1
3
.9

2
1
.0

9
2
2
.1

6
1
.1

0
θ

=
5

lo
ts

2
0
0
.7

8
2
0
2
.9

7
2
1
.8

8
2
.7

8
1
.0

9
2
2
.1

1
1
.1

0
O

u
t

θ
=

1
0

lo
ts

3
8
.3

9
3
9
.0

2
6
.2

9
2
.4

6
1
.6

4
6
.1

7
1
.6

1
θ

=
5

lo
ts

3
8
.3

9
3
9
.0

2
6
.2

8
1
.7

4
1
.6

4
6
.1

6
1
.6

0

IB
M

In
θ

=
1
0

lo
ts

7
1
5
.0

1
7
1
6
.5

6
1
5
.5

1
7
.9

7
0
.2

2
1
5
.7

7
0
.2

2
θ

=
5

lo
ts

7
1
5
.0

1
7
1
6
.5

6
1
5
.4

6
6
.5

1
0
.2

2
1
5
.7

1
0
.2

2
A

t
θ

=
1
0

lo
ts

4
0
9
.5

0
4
1
0
.5

9
1
0
.9

1
6
.8

3
0
.2

7
1
1
.0

3
0
.2

7
θ

=
5

lo
ts

4
0
9
.5

0
4
1
0
.5

9
1
0
.9

0
3
.8

0
0
.2

7
1
1
.0

1
0
.2

7
O

u
t

θ
=

1
0

lo
ts

1
9
9
.2

0
1
9
9
.8

5
6
.5

1
5
.5

2
0
.3

3
6
.4

6
0
.3

2
θ

=
5

lo
ts

1
9
9
.2

0
1
9
9
.8

6
6
.5

5
5
.0

4
0
.3

3
6
.5

2
0
.3

3

F
D

X
In

θ
=

1
0

lo
ts

5
5
5
.1

6
5
5
8
.3

5
3
1
.8

6
3
.2

0
0
.5

7
3
2
.2

6
0
.5

8
θ

=
5

lo
ts

5
5
5
.1

6
5
5
8
.3

5
3
1
.8

6
0
.7

8
0
.5

7
3
2
.2

7
0
.5

8
A

t
θ

=
1
0

lo
ts

2
1
2
.6

1
2
1
4
.4

2
1
8
.0

9
4
.0

5
0
.8

5
1
8
.2

8
0
.8

6
θ

=
5

lo
ts

2
1
2
.6

1
2
1
4
.4

2
1
8
.1

0
2
.6

0
0
.8

5
1
8
.3

1
0
.8

6
O

u
t

θ
=

1
0

lo
ts

4
4
.6

4
4
5
.2

0
5
.5

9
1
.3

9
1
.2

5
5
.4

5
1
.2

2
θ

=
5

lo
ts

4
4
.6

4
4
5
.2

0
5
.6

3
0
.1

7
1
.2

6
5
.4

9
1
.2

3

B
K

S
In

θ
=

1
0

lo
ts

5
2
0
.9

6
5
2
5
.5

2
4
5
.6

1
1
.2

7
0
.8

8
4
6
.1

4
0
.8

9
θ

=
5

lo
ts

5
2
0
.9

6
5
2
5
.5

3
4
5
.6

6
0
.6

4
0
.8

8
4
6
.2

1
0
.8

9
A

t
θ

=
1
0

lo
ts

1
5
0
.6

4
1
5
2
.9

0
2
2
.5

7
2
.7

8
1
.5

0
2
2
.8

3
1
.5

2
θ

=
5

lo
ts

1
5
0
.6

4
1
5
2
.9

1
2
2
.6

8
2
.6

0
1
.5

1
2
2
.9

3
1
.5

2
O

u
t

θ
=

1
0

lo
ts

1
2
.0

4
1
2
.3

6
3
.1

5
1
.2

9
2
.6

2
2
.9

2
2
.4

2
θ

=
5

lo
ts

1
2
.0

4
1
2
.3

6
3
.1

7
1
.0

2
2
.6

4
2
.9

2
2
.4

3

R
B

K
In

θ
=

1
0

lo
ts

5
1
8
.6

8
5
2
2
.5

6
3
8
.7

9
0
.6

7
0
.7

5
3
9
.1

9
0
.7

6
θ

=
5

lo
ts

5
1
8
.6

8
5
5
2
.5

5
3
8
.7

4
0
.2

6
0
.7

5
3
9
.1

5
0
.7

5
A

t
θ

=
1
0

lo
ts

1
4
5
.9

3
1
4
7
.8

3
1
9
.0

0
2
.6

5
1
.3

0
1
9
.2

0
1
.3

2
θ

=
5

lo
ts

1
4
5
.9

3
1
4
7
.8

3
1
9
.0

2
2
.6

3
1
.3

0
1
9
.2

4
1
.3

2
O

u
t

θ
=

1
0

lo
ts

1
0
.5

2
1
0
.7

6
2
.4

3
1
.7

2
2
.3

1
2
.2

4
2
.1

3
θ

=
5

lo
ts

1
0
.5

2
1
0
.7

6
2
.3

6
1
.2

4
2
.2

4
2
.1

8
2
.0

7



Table 6: Implied volatility of options under the non-optimal Black Scholes trading strategies.
The Black Scholes implied volatility derived from option prices which account for the impact
of illiquidity in the fifth columns of Tables 4 and 5 are reported below. In addition, the true
underlying volatility from Table 1 utilized in generating the option prices is given for ease of
reference. Results for ∆ = 1 day and θ = 5 lots are nearly identical to those of 2 days and 10
lots reported below respectively.

Option Characteristics Implied Black Scholes Volatility

Company Option True Black Scholes Fixed Time Black Scholes Random Time
Name Moneyness Volatility ∆ = 2 days θ = 10 lots

GE In 23.25% 23.91 23.94

At 23.25% 23.47 23.50

Out 23.25% 23.34 23.38

IBM In 30.93% 31.05 31.06

At 30.93% 31.00 31.01

Out 30.93% 30.98 30.99

FDX In 28.41% 29.00 29.02

At 28.41% 28.62 28.65

Out 28.41% 28.50 28.54

BKS In 37.39% 39.51 39.57

At 37.39% 37.88 37.95

Out 37.39% 37.57 37.63

RBK In 36.22% 38.10 38.17

At 36.22% 36.63 36.69

Out 36.22% 36.38 36.41
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