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Abstract

This paper studies the pricing of options in an extended Black Scholes economy in
which the underlying asset is not perfectly liquid. The resulting liquidity risk is modeled
as a stochastic supply curve, with the transaction price being a function of the trade size.
Consistent with the market microstructure literature, the supply curve is upward sloping
with purchases executed at higher prices and sales at lower prices. Optimal discrete time
hedging strategies are then derived. Empirical evidence reveals a significant liquidity cost

intrinsic to every option.



Risk management is concerned with controlling three financial risks: market risk, credit
risk and liquidity risk.! Starting with the Black-Scholes-Merton option pricing formula, both
market and credit risk have been successfully modeled with Duffie (1996) and Bielecki and
Rutkowski (2002) offering excellent summaries of these literatures. In contrast, our understanding
of liquidity risk is still preliminary.

This paper defines liquidity risk as the increased variability in realized returns from forming
a replicating portfolio or implementing a hedging strategy due to the price impact of random
transactions. In particular, the corresponding price impacts for the series of transactions re-
quired to hedge an option are stochastic since they depend on the evolution of the stock price.
Consequently, the liquidity cost associated with replicating an option is random. This liquidity
cost is the manifestation of the liquidity risk inherent in the hedging strategy’s performance.?

The approach in Cetin, Jarrow and Protter (2004) hypothesizes the existence of a stochastic
supply curve for a security’s price as a function of order flow.? Specifically, a second argument
incorporates the size (number of shares) and direction (buy versus sell) of a transaction to
determine the price at which the trade is executed. For a given supply curve, traders act as price
takers. The greater an asset’s liquidity, the more horizontal its supply curve. In the context of
continuous trading, they characterize necessary and sufficient conditions on the supply curve’s
evolution to ensure there are no arbitrage opportunities in the economy. Furthermore, conditions
for an approximately complete market are also provided.

In the most general setting with unrestricted predictable trading strategies, three primary

conclusions regarding liquidity risk are available. First, all liquidity costs are avoidable when



(approximately) replicating a derivative’s payoff using continuous trading strategies of finite
variation. Second, as a consequence of the previous statement, the value of a derivative security
is identical to its price in the classical theory which assumes markets are perfectly liquid. Third,
there are no implied bid-ask option spreads that are attributable to illiquidities in the underlying
asset. It isimportant to emphasize that these conclusions assume continuous trading of arbitrarily
small quantities.

However, not all predictable trading strategies are possible to implement in practice. In
particular, one cannot trade continuously with arbitrarily small quantities. To accommodate
these limitations, we define discrete trading strategies as those simple trading strategies where
the minimum time between successive trades is greater than a given constant 6 > 0. Although one
may trade at any point in time, subsequent trades occur after at least ¢ time units have elapsed.*
This situation is distinct from the classical approach in which “discrete” trading strategies are
not constrained to have a positive time step between trades, enabling them to approximate any
predictable trading strategy, with the cost of approximately replicating a contingent claim given
in Duffie and Protter (1988). In contrast, by imposing a minimum time between trades, the
classical theory is no longer valid. Specifically, one cannot approximate (arbitrarily closely) a
derivative’s payoff even in the absence of illiquidity. Furthermore, with illiquidity, we have an
additional complication as the liquidity costs do not converge to zero even for highly liquid
assets. Consequently, option bid-ask spreads are partially attributable to illiquidities present in
the underlying asset, along with the number of options being hedged.

The purpose of this paper is to investigate the pricing of derivatives using discrete trading



strategies when the underlying asset is not assumed to be perfectly liquid. Specifically, we study
the pricing and hedging of a FKuropean call option on a stock in an extended Black Scholes
economy with illiquidity. In this economy, transaction prices reflect the price impact of order
flow.

After calibrating the model’s parameters to market data, we investigate optimal hedging
strategies in the context of these illiquidities. The optimal hedging strategy results from a dy-
namic program which super-replicates the option payoffs. Two non-optimal discrete time trading
strategies based on the Black Scholes hedge are implemented for comparison. In particular, we
implement Black Scholes hedges at random as well as fixed time points. These Black Scholes
hedging strategies are studied for two reasons. First, they are used in practice (see Jarrow and
Turnbull (2004)) given the infeasibility of continuous hedging (due to market frictions). There-
fore, it is instructive to investigate whether these strategies are nearly optimal in our setting.
Second, because of their popularity in practice, they provide a useful standard for comparison
for understanding the optimal hedging strategy. Not surprising, our empirical results confirm
the non-optimality of the Black Scholes hedging strategies. Furthermore, our empirical results
demonstrate that even under the optimal hedging strategy, liquidity costs comprise a significant
component of an option’s price.

It is important to relate our paper to the literature on transactions costs, including Leland
(1985), Boyle and Vorst (1992), as well as Edirisinghe, Naik and Uppal (1993). Although trans-
actions costs also increase option prices, liquidity risk is endogenous to the trading process.

Moreover, liquidity risk is characterized by a continuous supply curve that is differentiable at the



origin, implying a well defined limit exists, even for continuous trading. Cetin (2003) contains
further details regarding the distinction between illiquidity and transaction costs.

Our proposed framework is also similar to the feedback effects on stock prices generated by
option hedging demands as well as the literature on large traders. These issues are studied in
Schonbucher and Wilmott (2000), Platen and Schweizer (1998) and Frey (1998). However, in
this context, it is important to emphasize that our specification is a “reduced-form” illiquidity
model since the supply curve is independent of transactions by other agents. Furthermore, our
framework focuses on temporary price impacts.’ Permanent price impacts associated with very
large transactions or a sequence of trades with the same direction are not typical properties of
hedging strategies.

The remainder of this paper begins with a description of the general model in the next section
while Section 2 introduces the extended Black Scholes economy. Estimation of the liquidity
parameter using a sample of five NYSE firms is conducted in Section 3. The derivation of
optimal discrete time hedging strategies is the subject of Section 4. For comparative purposes,
two non-optimal discrete time hedging strategies are also implemented in Section 5. Empirical

results follow in Section 6 with Section 7 offering our conclusions.

1 The Model

This section summarizes the relevant portions of Cetin, Jarrow and Protter (2004) used in the
subsequent analysis. We are given a filtered probability space (€2, F, (F})o<i<r, P) satisfying the

usual conditions where T is a fixed time and P represents the statistical or empirical probabil-



ity measure for a stock that pays no dividends. Also traded is a money market account that
accumulates value at the spot rate of interest denoted r.

Let S(t,x) represent the stock price, per share, at time t € [0, T] that a trader pays/receives
for order flow x normalized by the value of a money market account. A positive order (z > 0)
represents a buy, a negative order (z < 0) signifies a sale and x = 0 corresponds to the marginal

trade.

1.1 Trading Strategies and Liquidity Costs

A trading strategy is summarized as (X;,Y; : t € [0, 7], 7) where X, represents the trader’s aggre-
gate holding of stock at time ¢, and Y; the aggregate position in the money market account, while
7 denotes the liquidation time of the stock in the replicating portfolio. The trading strategy is

subject to the following restrictions:%

1. Xo_ =Y. =0,

2. Xy =0 and

3. X = Hlyy - for some process H(t,w) where 7 < T is a stopping time.”

These restrictions ensure that the trading strategy is liquidated prior to time 7" which ensures
that round-trip liquidity costs are incurred. The stopping time 7 allows the portfolio to be
liquidated prior to time 7.

A self-financing trading strategy (s.f.t.s) generates no cash flows for all times t € (0,7

after the initial purchase. More formally, a self-financing trading strategy is represented as



(X, Y: 1t €[0,7T], 7) where:

1. X; is cadlag with finite quadratic variation ([X, X]r < 00),

2. Yy =—-X05(0,Xp) and

3. for 0 <t <T,

t
Y: = Yo + Xo5(0, Xo) + / Xy—dS(u,0) — X3 S(¢,0) — Ly, (1)
0
where L, is the liquidity cost, defined as

L= AX,[S(u,AX,) = S(u,0)] +/ta—s(u,0)d[X,X]c >0 (2)

u
0<u<t 0:1:

with LO— = 0.

The expression [X, X|{ denotes the quadratic variation of the continuous component of X at
time t (see Protter (2004)).

Observe that the liquidity cost consists of two components. The first is due to discontinu-
ous changes in the share holdings while the second results from continuous rebalancing. For a

continuous trading strategy, the first term in expression (2) equals
Ly = Xo[S(0, Xo) — S(0,0)],

even after time zero. If the trading strategy is also of finite variation, then the second term in
equation (2) is zero because [ X, X|¢ = 0. Thus, for a trading strategy that is both continuous and
of finite variation, the entire liquidity cost is due to forming the initial position and manifested
in Ly. Furthermore, if one chooses a continuous trading strategy of finite variation with an

8



initial stock position equal to zero (X, = 0) that quickly “approaches” the desired level, then
the liquidity cost of this approximating s.f.t.s. is also zero. This insight is required to extend the

fundamental theorems of asset pricing.

1.2 Fundamental Theorems of Asset Pricing with Illiquidity

As is standard in the literature, an arbitrage opportunity is any s.ft.s. (X,Y,7) such that
P{Yr >0} =1 and P{Yr >0} > 0. A modified first fundamental theorem of asset pricing is

available with illiquidity. For § > 0, define
Op = {sfts (X,Y,7) | (X_-5s) > —[ for all ¢t almost surely} .

The modified first fundamental theorem of finance with illiquidity states that if there exists a
probability measure @Q ~ P such that S(-,0) is a Q-local martingale, then there is no arbitrage
for (X,Y,7) € ©4 for any g.

For pricing derivatives, we assume the existence of such a Q -local martingale for S(-,0). Next,
a market is defined to be approximately complete if given any contingent claim C', defined as a
Q-square integrable random variable, there exists a sequence of self-financing trading strategies
(X™, Y™ 1) such that Y} — C' asn — oo in L?(dQ).® This definition parallels the standard
definition of a complete market. The difference is that the payoff of any contingent claim is only
approximately attained.

Given this definition, a modified second fundamental theorem of asset pricing also holds
in this setting. The modified second theorem states that the existence of a unique probability
measure Q ~ P such that S(-,0) = s is a Q-local martingale implies the market is approximately

9



complete.

It is perhaps surprising that in an approximately complete market, a continuous and finite
variation trading strategy is always available to approximate any contingent claim that starts
with zero initial holdings in the underlying stock. Indeed, given any contingent claim C', there
exists a predictable process X such that C' = c+ fOT Xuds, and a sequence of s.f.t.s. (X™, Y™ 7"),
where X" is continuous and of finite variation with the properties X' = 0, X7 =0 and Y’ = ¢
such that YJ* — C in L?*(dQ). The liquidity cost of this sequence of s.f.t.s. equals zero (since
the first trade is of zero magnitude and the s.f.t.s. is continuous and of finite variation) with the

contingent claim’s payoff at time T approximated by
T
Y =c+ / X, dS(u,0). (3)
0
Consequently, the arbitrage free value for the contingent claim is its classical value,
E°[C]. (4)

This summarizes the three primary conclusions of Cetin, Jarrow and Protter (2004) and motivates

the extended Black Scholes economy with illiquidity presented in the next section.

2 An Extended Black Scholes Economy

To value a European call option in an extended Black Scholes economy, we assume the stock’s

supply curve satisfies

S(t,z) =e**S(t,0) with a>0 (5)

10



where

pt+oWy
S(t,0)= Lt =2 (6)

6rt 6rt
for constants p and o, with W; denoting a standard Brownian motion.

Equation (6) states that the marginal stock price S(t, 0) follows a geometric Brownian motion,
while the extended Black Scholes economy’s supply curve is given in equation (5). The e**
functional form for the supply curve is chosen for simplicity and is easily generalized. It is
important to emphasize that the supply curve given in expression (5) is stochastic. After a trade
is executed, a new supply curve S(t,z) is generated for subsequent trades.

Under the supply curve in equation (5), there exists a unique martingale measure Q for S(¢,0)
as explained in Duffie (1996). Hence, applying the extended first and second fundamental theo-

rems of asset pricing with illiquidity, the market is arbitrage-free and approximately complete.

2.1 Pricing a European Call Option

Consider a European call option on the stock with a strike price of K and maturity 7', with the
corresponding payoff Cr = max|[S(T,0) — Ke™"",0]. Expression (4) implies the European call

value equals

EC[Cr] = e E?(max[sy — K,0)) (7)

= 5N (ho) — Ke "' N(hg — oV/T),

where N(-) denotes the standard cumulative normal distribution function whose argument is

b = log(s¢) —log K +r(T —t) N
. oVT —t

11

T—t. (8)

|9



In this setting, the Black Scholes hedging strategy X; = N(h:) is continuous but not of finite
variation. Therefore, although the Black Scholes formula remains valid given liquidity costs, the
standard hedging strategy does not attain this value. Indeed, equation (2) implies the Black

Scholes hedging strategy results in a positive liquidity cost’

du, 9)

Ly = Xo(S(0, Xo) — S(0,0)) + /T « (N;(ﬁui)2 Su

as proved in Appendix A.
An example of s.f.t.s. that is continuous and of finite variation, yet approximates the call

option’s payoff is

This strategy starts with X' = 0 and quickly approaches an “average” of the Black-Scholes
hedge at time ¢. Then, just before maturity, liquidation transfers the accumulated value into the

money market account. The above trading strategy is seen to have zero liquidity costs with
T
Y = E°[Cr] + / X" dS(u,0)
0
(11)
—  Cp = max[S(T,0) — Ke™"" 0]
in L?(dQ). To summarize, the above trading strategy is a “smoothed” version of the Black

Scholes hedging strategy that eliminates liquidity risk.*°

12



2.2 Discrete Hedging Strategies

As previously noted, the continuous hedging strategy in expression (10) cannot be implemented
in practice. A class of feasible trading strategies are the discrete trading strategies defined as any

simple s.f.t.s. X; where

( 3
1. 7; are [F stopping times for each 7,
N
Xy € §Trliny + Zijl(Tj—lﬂ'j] 2. @, is in F;,_, for each j (predictable),
j=1
3. m=0and 7; > 7j_1 + 9 for a fixed 6 > 0.
\ Vs

These trading strategies are discontinuous because once a trade is executed, the subsequent trade
is separated by a minimum of 6 > 0 time units, as in Cheridito (2003). For the remainder of the
paper, lower case values x and y denote discrete trading strategies.

By restricting the class of trading strategies, we retain an arbitrage-free environment although
the minimum distance § between trades prevents the market from being approximately complete.
In an incomplete (not approximately complete market), the cost of replicating an option depends
on the chosen trading strategy.

For any discrete trading strategy, the liquidity cost equals

Ly = Z |:ij+1 - 557]'} [S(Tﬁxﬁﬂ o xT]’) - S(TJ#O)} : (12)

j=0

For a discrete trading strategy with xp = 0, the hedging error is given by

N-1
OT — YT = OT — 1% +.CE()S(0,0) + Z.CET]._H [S(Tj_H,O) — S(Tj,O)] + LT. (13)

J=0

13



Thus, there are two components to this hedging error. The first quantity, with a sign reversal

for ease of reference in later applications,
N-1
Yo + 205(0,0) + > s, [S(7551,0) = S(73,0)]| = Cr, (14)
=0
is the error in replicating the option’s payoff C7, and is consequently referred to as the approxi-
mation error. Thus, a positive approximation error signifies a surplus in the replicating portfolio
relative to the liability of the contingent claim’s payoff while a negative value represents a deficit.
The second component in equation (13) is the liquidity cost Ly defined in equation (12).
Furthermore, since a perfect balance between long and short option positions offsets their li-
abilities and eliminates the need to hedge using the underlying asset, this paper offers a method-
ology to infer option spreads conditional on a specified imbalance in the number of long and
short option positions (aggregated over strike prices and maturities). As emphasized repeatedly
in the remainder of this paper, equation (12) implies that liquidity costs increase quadratically
with the number of options being hedged while prices increase at a linear rate. This is best seen
from equation (16) in the next section. Finally, we focus on replicating long (hedging short) call
positions as they entail the possibility of negative cash flows at maturity.
To provide realistic illustrations of the impact of liquidity costs and hedging errors on the

option’s price, we first need to calibrate the a parameter and confirm the supply curve is upward

sloping. This is the subject of the next section.
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3 Supply Curve Estimation

To investigate the liquidity costs incurred when constructing options with discrete trading strate-
gies, this section details the estimation of the supply curve liquidity parameter « using the TAQ
database. For illustrative purposes, we select five well known companies trading on the NYSE
with varying degrees of liquidity; General Electric (GE), International Business Machines (IBM),
Federal Express (FDX), Reebok (RBK) and Barnes & Noble (BKS). Our empirical analysis is
conducted over a four year period with 1,011 trading days, from January 3, 1995 to December
31, 1998. These five firms represent a cross-section of stocks with respect to daily trading volume

which have options on the Chicago Board of Options Exchange (CBOE).!!

3.1 Estimation Procedure

A simple regression methodology is employed to estimate the liquidity parameter « in equation
(5). Although the true price S(t,0) is unobservable, this term is eliminated by considering two
consecutive intra-day transactions. Let 7; denote the time index with corresponding order flow
x,, and stock price S(7;,x,) for every transaction ¢ = 1,..., N in a given day. Thus, we are
led to the following regression specification

In (S(Ti-f—l? x7i+1)

S(Ti’ xﬁ) ) = |:.T7—i+1 - 'TTi:| + ,U/ [Ti—}—l - Tz] + 0—671'-4-177'1' . (15)

The error €, -, equals €y/7T;11 — 7; with € being distributed N(0,1). Observe that the left side of
equation (15) is the percentage return between two consecutive trades and this expression reduces

15



to a standard geometric Brownian motion when « is identically zero. Transaction prices instead
of the bid-ask spread are utilized for three reasons. First, trades may be executed “inside the
spread” which implies that quotes potentially overestimate liquidity costs. Second, the bid-ask
spread is a commitment to a specific volume which may change according to market conditions.
Third, quotes may be “stale” for infrequently traded stocks.

Given a series of transaction prices, the first issue is to sign the trade volume as either buys
or sells. To accomplish this task, the Lee and Ready (1991) algorithm is employed. Since our
analysis concerns the frequent hedging of options in small quantities, we limit our attention to
transaction sizes (absolute value of order flow) that are less than or equal to ten lots.

Our estimation procedure generates daily estimates for a over the sample period. Therefore,
a total of 1,011 regressions are performed for each of the five firms. The average number of

observations per day for each firm is reported in Table 1.

3.2 Estimation Results

Table 1 below displays the regression results from equation (15). The ninth and tenth columns
record the number of significant « and p coefficients. Observe that the estimated a parameters are
almost always significantly positive at the 5% level, in contrast to the u estimates. Thus, much of
the variation in intraday stock prices is attributable to order flow. Furthermore, the statistically
positive o estimates confirms the existence of our hypothesized upward-sloping supply curve in
equation (5).

However, the a estimates are somewhat “noisy” which suggests that alternative supply curve

16



formulations may be worth considering, two of which are explored in the next subsection as
robustness tests. Furthermore, it is important to emphasize that the standard errors are only
valid goodness-of-fit measures for an individual day since the estimation procedure is performed
daily.

Figure 1 displays the estimated time series of o parameters over the sample period for IBM,
FDX and BKS which represent high, medium and low liquidity securities respectively. Figure 2
plots the corresponding estimates for GE and RBK. As expected, the a estimates for IBM and
GE are lower than those of BKS and RBK, confirming our intuition regarding differences in their
liquidity.

It is important to emphasize that the liquidity cost of a transaction depends on both «
and the marginal stock price S(-,0). In particular, for a small a, a Taylor series expansion of

exp {a (:1:7]. o .CET].)} in equation (12) implies the terms in the summation are approximately

2

|:ij+1 o 557]'} S(Tj> 0) [exp {O‘ (xT]'-‘rl - xT]’)} - 1} ~ o S(Tj> 0) |:ij+1 o xﬁ} (16)

Observe the symmetry between purchases and sales as equation (16) indicates the sign of order
flow is irrelevant. Furthermore, we find evidence in Figure 2 that a and the marginal stock price
move inversely to each other. For example, as GE’s stock price increases over this sample period,
its a parameter declines. Intuitively, this suggests that market makers strive to obtain a constant
dollar-denominated fee per lot transacted. Overall, the liquidity cost is a function of both the «

parameter and the frictionless stock price S(-,0).

17



3.3 Robustness Tests

As a robustness check of our a estimates, we alter our original estimation procedure in three
ways. The first modification continues with equation (15) but excludes transactions larger then
five lots. Although the empirical evidence in Hausman, Lo and MacKinlay (1992) suggests
decreasing marginal price impacts, frequent hedging of an option implies small transactions and
this renders many of the transactions recorded in the TAQ database irrelevant to our analysis.'?
The second and third robustness checks consist of two alternative supply curves with diminishing
marginal price impacts,'?

sen(z) \/|z| (17)
and

sgn(z) In(1 + |z]). (18)

These two formulations are upward sloping and satisfy the property that S(-,0) = 0. Fur-
thermore, they only require the estimation of one parameter using the regression procedure in
equation (15). In particular, after applying a logarithm to the ratio of transaction prices, the
exponential functional form facilitates a simple regression analysis for the calibration of . More
complicated supply curves involving additional parameters are left for future research.

The modified marginal price impacts in equations (17) and (18) are both calibrated with order

18



flow up to and including ten lots using the following two regressions which parallel equation (15),

In (M) = asgn ([zr,, — z,,]) }xml — Zp| F [T — T+ €

S(Tbxﬂ')

and (19)

In (S(Ti—’—l’xﬁﬂ)) = osgl (['Tﬂ'-u - xﬂD In (1 + }xﬂ'-&-l - I ) +u [Ti—i—l - Tz’] + O €y, 7 -

S(Ti, xr,)

The results of our three robustness tests are now summarized.'* The first robustness test
results in the average number of available daily transactions declining from those reported as n
in Table 1 to 720, 432, 181, 226 and 122 respectively for GE, IBM, FDX, BKS and RBK. Thus,
a loss of information is incurred.

All three robustness tests produce very significant « estimates. Overall, the « estimates are
smallest for equation (15) with a ten lot upper bound (the original procedure) followed by those
generated by transactions of five lots or less. Next in magnitude are the square root estimates
from equation (17), with the log formulation in equation (18) producing the largest « coefficients.

However, the original formulation in equation (15) produces « estimates with the lowest
standard errors. This result is consistent across all five firms. Thus, our subsequent option
pricing investigation is justified in using the a estimates from Table 1.

To further validate the supply curve formulation of liquidity in Section 1, we perform an
additional experiment whose results are contained in Table 2. The “hypotheses” on the left
side of Table 2 offer the implications of our upward sloping supply curve when both time ()
and information (w) are fixed. The price inequalities indicate the ordering of transaction prices

19



realized in a given sequence of trades. These statements amount to identifying different locations
on the supply curve. To approximate this comparative static in the data, we examine consecutive
transactions in which the influence of p is negligible. Despite the noise introduced by a change in
time (and information), if the upward sloping supply curve formulation is valid, then we expect
the inequalities to hold for the majority of transaction sequences studied.

The results on the right side of Table 2 confirm the validity of our liquidity model. It is
important to emphasize that our model assumes transitory price impacts and the comparative
static implication assumes no change in information. Hence, only transactions less than 10 lots
are likely to be consistent with those arising from frequent hedging and non-information based
trades (with w fixed). These situations are best reflected in the first two rows of Table 2. The
last four rows of Table 2 consider situations in which small buy (sell) orders are subsequent to
large buy (sell) orders. In these four rows, information may not be constant across the two
transactions. Therefore, we expect a decline in consistency relative to the first two rows. This
pattern is observed although the decline is slight. More importantly, the bottom four rows in

Table 2 continue to support the implications of our liquidity framework.

3.4 Stochastic Liquidity

It is important to emphasize that variability in the a estimates over time does not imply a
misspecified liquidity model. The standard errors of the a coefficients reported in Table 1 attest
to its accuracy. Moreover, a “stochastic” « process is unnecessary if this parameter varies

inversely with the marginal price, implying a roughly constant dollar-denominated liquidity cost
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per transaction.!® Figures 3 and 4 offer visual evidence consistent with this property.
Statistically, with ¢ representing daily estimates, an AR(1) model is applied to the product

a(t)S(t,0)

a(t)S(t,0) = Balt—1)SEt—1,0)+ e (20)

a(t)S(t,0) — a(t —1)S(t—1,0) = [ —1] a(t —1)S(t —1,0) + . (21)

We then estimate the § coefficient to investigate whether it is statistically different from one. If

not, then the model

a(t)S(t,0) —alt — 1)S(t—1,0) = e, (22)

cannot be rejected and variation in the product over time is merely noise. Several time intervals,
such as 30, 90 and 180 days are examined with equation (22) offering similar results. For
example, 95% confidence intervals for the § parameters over the last 90 days of the sample
period are 0.9943 £ 0.0293, 0.9856 £ 0.0876, 0.9693 + 0.0902, 0.9947 +0.0811 and 0.9744 4 0.0801
for GE, IBM, FDX, BKS and RBK respectively. Consequently, time variation in « is not a
serious concern when calibrating liquidity costs. Over the entire sample, a slight downward bias
is detected with (8 being statistically less than one. However, this time period greatly exceeds
available equity option maturities.

In our later empirical implementation of the discrete option hedging strategies we consider
two calculations of the total liquidity cost; the first using equation (12) and the second derived
from the approximate liquidity cost in equation (16). In the second instance, we assume the
a(7;) S(75,0) terms are fixed at their initial value « S(0,0). In particular, we define the approx-
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imate liquidity cost as

Ly = ZO‘(Tj) S(75,0) |:ij+1 - xﬁf

j=0

= 80,0 [rr, —2.]" (23)

J

The economic importance of a time-varying « to option pricing is examined empirically by
comparing the liquidity cost estimates in equation (12) versus equation (23). This comparison is
conducted for each of the three discrete time trading strategies analyzed, with details contained
in Section 6.

For emphasis, although the estimates of a and S(¢,0) appear inversely related, one cannot
estimate a after normalizing the [z, — 2] term in equation (15) by S(¢,0). Indeed, the
marginal price S(¢,0) is implied from transaction prices S(¢,x) conditional on an estimated
a parameter. Specifically, a time series of marginal prices corresponding to transactions with
zero order flow is unobservable. Instead, only transaction prices in a less than perfectly liquid
market are available. Consequently, inferences regarding S(t,0) as well as its volatility o (and
expected return p) utilize transaction prices S(t, x). These transaction prices are then “inverted”
to determine marginal prices under an assumed supply curve formulation along with estimates
for its parameters such as a.

Therefore, an estimation procedure which attempts to calibrate o/ in the regression formula-
tion

«

S(Ti-l—l?xﬂ' 1) '
ln( S(r ) ) =S el Pl m o e 2y

instead of equation (15) is misspecified.
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4 Optimal Discrete Option Hedging Strategies

This section derives optimal discrete time hedging strategies for super-replicating an option.
Super-replication is often invoked in the incomplete markets literature due to its independence

from investor preferences and probability beliefs.

4.1 Super-Replication of Options

Our hedging analysis utilizes the discrete trading strategies from Subsection 2.2 with the property
that v = T. Let E;[-] denote an expectation with respect to the martingale measure and define
Zy = XiS(t,0) + Y; as the time ¢ marked-to-market value of the replicating portfolio.

For super-replicating a call option, the optimization problem is:

&n%zo s.t. Zr > Cr =max{S(T,0) — Ke™"" 0} (25)
where
N-1
ZT =Y+ 'TOS(()? 0) + Z x7j+1[S(Tj+1> 0) - S(Tj> 0)] - LT .
=0

At an intermediate time ¢ > 0, this problem is written as'®

(r)r(n%zt st. Zr > Op = max{S(T,0) — Ke"",0}. (26)

4.2 Solution Methodology

The solution to the super-replication problem exists since an investor can always hedge by pur-

chasing one unit of the underlying stock. Given the super-replication problem in equation (25),
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the following lemma demonstrates that liquidity costs are minimized by trading as frequently as

possible with the smallest possible quantities.

Lemma 1. The optimal hedging strategy trades whenever possible with the smallest possible trans-
actions. Thus, this strateqy has the minimum expected liquidity cost among all super-replicating

portfolios with trades at d-intervals.

Proof: Under the martingale measure,

Now, consider trading at two different time points 0 and ¢ with quantities a > 0, b > 0 versus one
combined transaction at time ¢ comprised of a + b > 0. The expected liquidity cost of trading
twice is

S(0,0)[e** — 1] + Eo[S(t,0)][e*® — 1] (28)

versus the expected liquidity cost of trading once, Eg[S(t,0)][e*(@*?) — 1]. Under the martingale

measure (with g =r — %02), the discounted stock price is a martingale with the property

— oW, 50
Bo[S(t,0)] = B [soe Tt W} = =% =5(0.0). (29)
Using this equation, it is seen that
[e2% — 1] + [e®® — 1] < [e™@FY) —1]. (30)

Thus, two trades incur a lower total liquidity cost than one, implying more frequent transactions

are optimal. Indeed, not trading at the first available instant leaves the option position unhedged
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for a period of time. Consequently, an extra transaction is needed at a later date which increases
the expected total liquidity cost and yields a suboptimal portfolio. O

To clarify and interpret the above lemma, we emphasize that the optimal hedge minimizes
liquidity costs with respect to all trading strategies that super-replicate the option. However, the
optimal hedge does not produce the smallest liquidity cost among all possible trading strategies.
Indeed, imagine a trivial strategy that does not trade at all. This strategy yields a zero liquidity
cost but does not attempt to control the approximation error. Furthermore, the intuition why
more frequent trading reduces liquidity costs may be drawn from Subsection 1.1 where it is
seen that a continuous strategy of finite variation eliminates the liquidity cost, with an example
provided in equation (10). In our discrete time context, more frequent hedging offers a better
approximation to a continuous hedge strategy of finite variation.

With the previous lemma, we proceed to solve the problem as a constrained discrete time
dynamic program for a fixed A time step. Notationally, ¢ is reserved for the minimum time
between trades of the same investor. In other words, lower case ¢ is a market-based parameter
that signifies the smallest duration between consecutive market orders executed for the same
trader. The upper case A represents an input for a binomial option pricing solution and is
simply a computational specification.!”

We implement a numerical procedure to solve this problem based on a binomial approximation
to the geometric Brownian motion in expression (6). A two step illustration of this numerical
procedure is discussed in the next subsection. Unlike the transaction costs literature whose limit

implies infinite option prices when trading is continuous, our methodology has A — 0 being
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well defined. In particular, we are discretizing a liquidity framework that allows for dynamic
continuous time rebalancing of the replicating portfolio, as illustrated in the smoothed Black
Scholes hedging strategy of equation (10). In contrast, the traditional super-replication approach
with transaction costs cannot appeal to continuous trading. Instead, a static hedge strategy for
a call option that purchases one unit of stock at time zero is their result. Overall, we impose
an exogenous constraint on trading strategies to conform with market practice, not because
the underlying mathematics limits our analysis to discrete trading. Consequently, the known
convergence of the binomial process to a geometric Brownian motion justifies our numerical
solution, and is consistent with applications to exchange-traded American equity option.

Note that the super-replication procedure ensures the approximation error in equation (14) is
non-negative, even if intermediate stock price movements between hedge portfolio rebalancings
occur. In this instance, super-replicating the option adds the largest (worst case) approximation
errors to the constrained optimization. Therefore, after being translated into higher liquidity

costs, these positive errors are interpreted as forcing the investor to confront more illiquidity.

4.3 Implementation

The following offers a brief summary of the steps required to implement the dynamic program-
ming procedure using a binomial stock price process. Additional details regarding its general
solution are provided in Appendix B. Consider a two-period binomial tree with an initial stock
price denoted S. Up and down factors are signified by U and D respectively and are identical to

those in the standard binomial tree literature. At time 1 (A = 1), the stock price is either SU
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or SD while at the option’s maturity, three stock prices are available; SUU, SDU and SDD.
By construction, SUD = SDU since the binomial tree is recombining.
At time 1, in the up state, our objective is to solve for yy and xy, the amount in the money

market account and stock respectively. The minimization problem involves two constraints

min Z¥ = yy 4 2uSU + afzy — 21)>SU (31)
such that yu + zpSUU > max{SUU — K, 0}

yu + zpSDU > max{SDU — K,0}.
Similarly, in the down node, the quantities yp and xp are obtained as the solution to

minZlD = yp+apSD+ afzp —x1]2SD (32)
such that yp +xpSDU > max{SDU — K,0}

yp +xpSDD > max{SDD - K, 0} .

Denote these optimal solutions as z7;, x},, y; and yj, which appear in the time 0 constraints. At

time 0

min Zy = 1.5 + y1 + Oza:fS such that
1S + y1 + 21(SU — ) = yi; + 25U + alz}; — 21])*SU (33)

218 +y1 +21(SD = S) = yp, + 2 SD + afa}, — x1)°SD (34)

for which the optimal x; and y; values are solved. The super-replication price of the call option
thus equals 2S5 + yi + a(x})2S. Equations (33) and (34) each pertain to one of the two possible
stock price paths from time 0 to time 1. For example, the left side displays the initial portfolio
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value plus the gain (or loss) on stock position, while the right side is the optimal value of
the replicating portfolio at either the up or down node plus the associated liquidity cost of

rebalancing.

5 Discrete Hedging Strategies for Comparison

Besides the optimal hedge in the previous section, we also investigate non-optimal discrete trading
strategies that employ the Black-Scholeshedge at fixed time intervals as well as random time
points.'® These alternative hedging strategies are implemented via simulation for the geometric
Brownian motion stock price process. These Black Scholes hedging strategies are studied for two
reasons. First, these strategies are implemented in practice (see Jarrow and Turnbull (2004))
because of the infeasibility of continuous hedging. Second, their popularity in practice provides
an appropriate benchmark for comparison with the optimal hedging strategy.

Empirically, we analyze 10 European call options, each on 100 shares of the underlying stock.
The average implied volatility for call options (from Bloomberg)!® and the average closing stock
price (from TAQ) during the sample period serve as inputs with their values reported in Table 1.
Option moneyness is adjusted according to $5 intervals. For example, in-the-money (out-of-the-
money) options have a corresponding stock price that is $5 higher (lower) than the strike price.
Throughout our analysis, results are presented for 30 day option prices although the errors are
similar for other maturities. For simplicity, the riskfree rate is set equal to zero as this has a

negligible impact on the 30 day option’s price (average interest rate below 5% during our sample

period).
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The fixed time trading strategy is represented as x, = z; for u € [t,t + A] for a specified
A where x; is the Black Scholes delta hedge parameter. Observe that the amount transacted is
random. As alluded to earlier, the dependence on the random stock price necessitates simulation
to price the options. We consider hedging frequencies of one and two days along the stochastic
price path.

The second trading strategy hedges at random time points with z, = x; provided |z, — x| <
0 for a given # > 0. In particular, trades only occur when the previously executed Black
Scholes delta hedge differs by more than 6 from the replicating portfolio’s current requirement.
Thus, transactions are induced by the need to rebalance the hedge portfolio. Moreover, with
a transaction executed the instant the 6 barrier is breached, we refer to the quantity traded as
being fixed. The control width 6 is chosen to coincide with transaction sizes of 5 and 10 lots.?°

The two non-optimal hedging strategies are evaluated using 10,000 simulations, each over a
30 day period. For the random time strategy, rebalancing of the hedge portfolio may occur at
any of 300 points along the stock price path once the control width is breached. However, our
results are not sensitive to this figure. Indeed, as many as 5,000 potential hedge time points are

examined with similar results.?!

6 Empirical Results

Our results are contained in Tables 3 to 5 for 10 options, each on 100 shares. Naturally, larger po-
sitions imply greater percentage price impacts for illiquidity as equation (16) illustrates that the

liquidity cost increases quadratically with transaction sizes. Our empirical results are reported
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for components of the hedging error; liquidity costs and approximation errors. For ease of com-
parison, the absolute value of the average approximation error is reported since super-replication
of the option implies only non-negative errors for the optimal hedge strategy.

Using the optimal trading strategy detailed in Subsection 4.3, Table 3 reports summary
statistics for the dollar-denominated liquidity costs?? and as well as their percentage impacts.
The dynamic programming procedure produces an option price £15(0,0) + y1 + aS(0,0)z? that
includes the initial cost of forming the replicating portfolio. To proxy for the frictionless option
price, we resolve the dynamic program under the constraint that a = 0 and utilize the output
225(0,0) + ) where the 0 superscript refers to the constraint on the liquidity parameter. This
price serves as the basis for computing the percentage impact of illiquidity.

The last column of Table 3 (as well as Tables 4 and 5), is concerned with the approximate
liquidity cost defined in equation (23). When compared with the results in earlier columns derived
from equation (12), only minor discrepancies are reported. Thus, the economic repercussions of

stochastic liquidity appear to be minor.

6.1 Non-Optimal Hedges

According to Tables 4 and 5, liquidity costs are not sensitive to the rebalancing frequency when
compared with the option’s moneyness. Based on the approach which hedges at fixed time
intervals, approximation errors are reported in Table 4 and experience a significant decrease after
reducing A from two days to one, while the liquidity costs are almost identical.?® Consequently,

more frequent rebalancing yields smaller hedging errors. As recorded in Table 5, the random
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time Black Scholes hedge also produces similar liquidity costs across the two control bands, equal
to 5 and 10 lots. In contrast, the approximation errors are larger for the wider 10 lot control
band. As a result, a smaller value of # is desirable for reducing the hedging error.

Overall, for the chosen parameters we study, hedging more frequently (smaller A or #) reduces
the approximation errors, although the liquidity costs are less sensitive to these parameters.
However, even for the smaller values of A and 6, the approximation error remains considerable.

Observe that the optimal trading strategy produces similar, and often lower, liquidity costs
relative to the Black Scholes implementations executed at more frequent intervals. Not surpris-
ingly, for out-of-the-money options, the safety offered by super-replicating an option occasionally
results in higher liquidity costs as more of the stock is purchased to guard against the possibility
of a “bad” scenario coinciding with an increase in the stock price.

As emphasized previously, there are fundamental differences between the optimal and non-
optimal hedge strategies which complicates a direct comparison. Specifically, the non-optimal
hedges add an associated liquidity cost to a frictionless option price, while illiquidity is intrinsic
to the optimal strategy since the hedging error implications of a transaction are accounted for
in the dynamic program’s constrained minimization. Thus, the liquidity costs associated with
a transaction are manifested in the optimal trading strategy as inputs. However, in economic
terms, imposing the constraint that the replicating portfolio’s value at maturity is at least as

much as the option’s payoff does not appear to result in significantly higher liquidity costs.
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6.2 Summary of Empirical Results

First, liquidity costs are a significant component of an option’s price. These costs increase
quadratically with the imbalance in the number of short or long positions being hedged. Second,
the optimal hedging strategy provides similar and often reduced liquidity costs relative to the
Black-Scholes hedge, but has the advantage of avoiding negative approximation errors. Third,
liquidity risk is primarily generated by random transactions since the cost per transaction (a
function of a(t) - S(t,0)) is relatively stable over time. In other words, conditional on a specified
transaction size, stochastic liquidity is not a serious concern. This property is a consequence of
a(t) and S(t,0) exhibiting inverse fluctuations over time.

Finally, our fourth result finds that employing the Black Scholes hedge induces a relationship
between an option’s moneyness and the percentage impact of illiquidity. Specifically, in-the-
money options are subject to the lowest percentage impact from illiquidity, despite having the
largest dollar-denominated liquidity costs. This large dollar-denominated liquidity cost is par-
tially attributed to the high initial cost of forming the replicating portfolio as the option trader
is assumed to start with zero shares of the underlying stock. With in-the-money options, most of
hedge portfolio re-balancing occurs when the stock price decreases. Conversely, with the initial
cost of the option being relatively large, a correspondingly small percentage price increase is
incurred. However, for out-of-the-money options with low initial prices, the impact of illiquidity
is very significant despite a small dollar-denominated liquidity cost. As expected, at-the-money
options lie between these extremes.

Since the impact of illiquidity is related to an option’s moneyness, assuming a frictionless
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market yields biased implied Black Scholes volatilities when its associated hedging strategy is
implemented. In other words, conditional on an observed option price, ignoring liquidity costs is
tantamount to overestimating option prices, which implies implied volatilities are overestimated
as a consequence. The extent of this bias depends on the strike price.

Table 6 reports implied volatilities for the two non-optimal Black Scholes hedge strategies,
while Figure 5 plots a “smile” over five different strike prices and two maturity dates (30 and
90 days). In Figure 5, o and « are chosen to be 30% and 1.25x107* respectively as these are
representative parameter values. Furthermore, Figure 5 considers the replication of 25 options
using a discrete Black Scholes strategy implemented every two days (with nearly identical results
for its random time counterpart). With the Black Scholes implied volatilities computed under
the assumption of a perfectly liquid market (a = 0) for the underlying asset, while option prices
are increased by the liquidity cost associated with their replication, an upward bias in implied
volatilities is detected. Moreover, the only source of this upward bias is the liquidity cost of
replicating the option. Both Table 6 and Figure 5 indicate that illiquidity causes the implied
volatility of in-the-money options to have the largest upward bias.?*

However, it is important to emphasize that illiquidity is not the exclusive catalyst for hav-
ing implied volatilities depend on strike prices. Other alternatives include jumps and stochastic
volatility as well as feedback effects from a trader with a large stock or option position. Nonethe-
less, unless our optimal hedging strategy is implemented, liquidity costs may be partially respon-

sible for generating the implied volatility “smile” documented by Rubinstein (1985).
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7 Conclusion

This paper represents the first attempt to consider the impact of illiquidity in the underlying
asset market on option pricing. Consequently, this paper serves to link the market microstructure
and option pricing literatures.

An extended Black Scholes economy is utilized to illustrate the theory and provide initial
estimates for the impact of illiquidity on option prices. Liquidity costs are modeled as a stochastic
supply curve with the underlying asset price depending on order flow. Consistent with the market
microstructure literature, purchases are executed at higher prices while sales are executed at lower
prices.

In addition, optimal hedging strategies that super-replicate an option are derived by solving
a dynamic program. For comparative purposes, two non-optimal but intuitive discrete hedging
strategies are also implemented.

Empirical results document the importance of illiquidity to option pricing. In particular,
liquidity costs are a significant component of the option’s price, and increase quadratically in the
number of options being hedged. Second, the standard Black-Scholes hedging strategies often
have higher liquidity costs than the optimal hedging strategy, and admit the possibility that
the replicating portfolio is worth less than the option’s liability at maturity. Third, non-optimal
Black-Scholes hedges cause the impact of illiquidity to depend on the option’s moneyness, offering

another explanation for the implied volatility smile.
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Appendices

A Liquidity Cost of Black Scholes Hedge

The liquidity cost of the Black Scholes hedge is

LT = Xo(S(O,Xo) — S(O, 0)) + \/OT O(Sud[N(h), N(h)]c

u

= Xo(5(0, Xo) — 5(0,0)) +/0Ta$u (N ()" d [h, 1,

— Xo(5(0, Xo) — 5(0,0)) + / asu (V' (h))* 5=

= Xo(5(0, Xp) — 5(0,0)) —|—/0 %U%idu
N’ (hu))2 Su

—  X,(S(0, Xo) — S(0,0)) +/TO‘(

i T o du. (35)

B Dynamic Programming Details

The dynamic programming technique is a two-stage process. First, self-financing trading strate-
gies that minimize the terminal deficit, as in equation (36) below are found. The second step
then selects the hedge with the lowest initial cost from the previous set of strategies. A recursive

technique is introduced to solve the super-replication problem. Let

J(xz,y) = min E[max{Cr— Zr,0}], (36)

XeX(z,y)

where X (z,y) is the set of s.f.t.s. whose initial value are Xy = = and Yy = y. Thus, J(z,y) is the
minimum expected terminal deficit starting with an initial position (z,y). Clearly, J(z,y) =0
for sufficiently large values of x and y since such initial positions ensure the contingent claim is
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hedged. Thus, the following expression is well defined?
z* = min{y +x5(0,0) : J(x,y) =0}. (37)

The above is the minimal super-replication price for hedging the contingent claim. Thus, finding
the minimal super-replication price is a two-step procedure. First, J(x,y) is calculated for all
x,y. Then, the price y + 25(0,0) is minimized over all x,y such that J(z,y) = 0. Note that
the expected terminal deficit of a s.f.t.s. is zero if and only if the strategy super-replicates the
claim. In addition, to uniquely identify (x,y) from the minimization procedure, the self-financing
condition is required.

For notational simplicity, let T' = A - M for some M > 0 representing the total number of

trades. To apply the recursive algorithm, define for t € {n-A:n € {0,...,M}},

Ji(x,y,5(t,0)) = min FE; [max{Cr— Zr,0}], (38)

XeXt(Ivy)
where X;(x,y) is the set of s.f.t.s. with X; = z and Y; = y. For simplicity, 7' — n represents

t = A - (M — n) throughout the remainder of this appendix. Consider the boundary condition,
Jr(z,y,S(T,0)) = max{Cr —y — xS(7,0),0}, (39)

at time T" where x and y are the positions in the stock and money market at 7" as defined after

equation (38). The following is the recursive relation between time t and ¢ + 1:
Ji(z,y,5(t,0)) = rrAlin Ei[Jipa(x + Az, y — AxS(t, Ax), S(t+1,0))] . (40)

Intuitively, x shares in the stock and y shares in the money market account at time ¢ is equivalent
to having « + Ax shares and y — AzS(t, Ax) in the money market (implied by the self-financing
condition) at time t 4+ 1 for an arbitrary transaction size Ax.
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The first order condition for the minimization problem in (40) is given by

E, {aJtH (x + Az, y — AzS(t, Az), S(t+ 1, 0))]

ox
_ B {agt; (z + Az,y — AzS(t, Az), S(t+ 1,0)) (&(msu, Aa:)))} @

Equation (41) states that the change in the value of the stock position equals, on average, the
marginal cost of executing the transaction scaled by the sensitivity of the value function to
movements in the money market account. The marginal cost of executing the transaction is

- (AxS(t, Az)) while the scaling factor equals a‘é;y“(x + Az, y — AzS (t,Az), S(t+ 1,0)).

B.1 Binomial Implementation of Dynamic Program

Recall that the self-financing condition at time ¢ implies

Y — Y1 = —(xr —2e1)S(t— 1,20 — 24-1) (42)

= —(.Tt — .Tt_l)S(t — 1, 0) — (.Tt — .Tt_l)[S(t — 1,.Tt — xt—l) — S(t — 1, 0)] . (43)
Thus, for each t, we have

Zt—l = .CEt_l»S(t — 1, 0) + Yt—1 (44)

= .fEtS(t— 1,0) +yt+ (.CL"t—.CEt_l) [S(t— 1,.Tt _-Tt—l) — S(t— 1,0)] .

Recall that z; is F}_j;-measurable along with y; according to the self-financing condition. Pro-

ceeding backwards from time 7" — 1,
min ZT—1 = yr+ ZETS(T — 1, 0) + (.CET — .CET_l) [S(T — 1,.CET — .CET_l) — S(T — 1, 0)] R
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such that Zp > Cp. Observe that liquidity costs are minimized in the above formulation subject
to the approximation errors being non-negative. Invoking the binomial approximation with

S(T,0) being either S(T"— 1,0)U or S(T'— 1,0)D, x7 and yr should satisfy

yr + 20 S(T—1,00U > (S(T —1,0)U — K)* (45)
yr +x7rS(T —1,00D > (S(T —1,0)D — K)*. (46)
Since U and D are constants, xr and yr are Fr_j-measurable as required. Among all values of

xp and yr satisfying the above inequalities, the optimal values minimize yr + z75(7 — 1,0) +

(xp —xp—1) [S(T — 1,20 — 27-1) — S(T — 1,0)]. Denote the optimal solution as

zp(S(T = 1,0), z7-1, yr—1) - (47)

At time T — 2 the super-replication problem becomes

min Zy 5 = a7 1S(T —2,0) +yr—1 + (xr-1 — 27 2)[S(T — 2,271 — 272) — S(T —2,0)],

such that Zp > Cp which is equivalent to

min Yr—1 + £ET—1S(T -2, 0) + (ZET—1 - £17T—2) [S(T — 2,271 — lL"T—z) - S(T -2, 0)]
s.t. Yr—o2 + £ET—2S(T -2, 0) - (ZET—1 - £17T—2) [S(T — 2,071 — £17T—2) - S(T -2, 0)]
tar1 [S(T —1,0) — S(T — 2,0)]

= yp +apS(T = 1,0) + (z —2r1) [S(T' = 1,27 — 27-1) = S(T' = L,0)] . (48)

In the above, dependency of z% and y} on S(T — 1,0), zr—1 and yp_; is implicit. Thus, we
begin at time 7' — 2 to end at 7' — 1 with the optimal allocation in the stock and bond which
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is capable of super-replicating the claim at time 7. The expression in equation (48) equals

yr—1 + x7r-1S(T — 2,0). Thus, the minimization problem becomes

min Yyr—1+ £ET—1S(T -2, 0) + (ZET—1 - £17T—2) [S(T — 2,71 — £17T—2) - S(T -2, 0)] (49)
s.t. Yr—1 + .CET_l;S(T — 2, 0) +x7_1 [S(T — 1, 0) — S(T — 2, 0)]

= yr+a5S(T—1,0) + (x5 — xr—1) [S(T — 1,2 — xp—1) — S(T — 1,0)] .

The method continues until time 0. For any ¢t < T', super-replication requires finding x; and

that minimize
Y + .TtS(t — 1, 0) + (.Tt — xt—l) [S(t — 1,.Tt — xt—l) — S(t — 1, 0)] R (50)
subject to the constraint

yr + 25t —1,0) + 24 [S(¢,0) — S(t —1,0)] (51)

= y:—f—l + ;17:+15(t, 0) + (5’7:+1 — x4) [S(t> 37:-1-1 — ) — S(t, 0)} )

given xy , from the previous solution.
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Footnotes

1. Two other risks are often discussed in the literature; operational and model risk. However,
since these risks are due to the legal system and model usage respectively, they may be

considered non-financial.

2. This notion of liquidity risk is valid even if the cost per transaction is stable over time since
the sign and size of transactions generated by the hedge strategy remain functions of the

random stock price.

3. Chen, Stanzl and Watanabe (2001) examine the impact of illiquidity on the price of sub-
sequent transactions, but not the price impact of trades within the context of a coherent
mathematical model. By means of a statistical analysis, Lillo, Farmer and Mantegna (2002)

also construct a supply curve without a mathematical model.

4. These trading strategies have been previously studied by Cheridito (2003) in the context

of fractional Brownian motions.

5. As a consequence, our model is not appropriate for applications involving the liquidation

or acquisition of large positions in the stock relative to the number of outstanding shares.

6. X; and Y; are predictable and optional processes, respectively.

7. Here, H(t,w) is a predictable process and 7 is a predictable (F; : 0 < ¢t < T') stopping time.

8. The space L?(dQ) is the set of Fr— measurable random variables that are square integrable
using the probability measure Q.
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9.

10.

11.

12.

13.

14.

15.

16.

17.

Both Ly and Y} are already normalized by the value of the money market account.

An integral of a continuous function with respect to the Lebesgue measure is of bounded

variation and continuous.

Subsequent research by Blais and Protter (2005) provides additional support for the linear
supply curve structure given in expression (15) below for liquid stocks. Our stocks, with
options trading on the CBOE, would fall into this category. For illiquid stocks, the supply
curve appears to be piecewise linear but with stochastic slopes and a jump discontinuity

at zero.

In reality, there may exist economies of scale for option pricing since replication costs are

not linear in the number of underlying contracts.

(

1 ifz>0

The function sgn(z) is defined as 0 ifr=0.

-1 ifz<0
\

For brevity, detailed tables containing the results are unreported but available upon request.

Dramatic evidence of this property is found around stock splits. Note that a expresses

illiquidity in percentage terms while Ly is a dollar-denominated quantity.

Since Zp = Yr + xpS(T,0), the same principle applies at time 7" with zr being non-zero.

Since the liquidity cost for the optimal hedge strategy declines with more frequent trading,

in theory, A would be reduced by an infinitely powerful computer until it reached the lower
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18.

19.

20.

21.

22.

bound §, while in practice, the option price converges (to two decimal places) for A > 4.
To clarify, A may be further divided into Ay and Ag, corresponding to the time interval
between hedge portfolio rebalancings and stock price movements respectively. This enables
Ag — 0 ( decline below ¢), producing a geometric Brownian motion as in our comparative
study of non-optimal hedging strategies. However, with regards to our optimal trading

strategy in this section, Ay = Ag, and there is no distinction.

The trading strategy in equation (10) is not implemented as it is continuous and of finite

variation by design.

Bloomberg implied volatilities are computed using closing prices of three options which are
closest to being at-the-money (across possible maturities). Closing prices are the bid (ask)
if the last transaction is below (above) the bid (ask) or the transaction price itself if it lies

between the option’s bid-ask spread.

Justification for these values follows from plotting the distribution of absolute transactions

(unsigned order flow) although some dependence on the strike price is detected.

As a consequence of the numerical grid, a minimum distance between trades is enforced in
the random time non-optimal hedging approach, although a Brownian motion process may

generate z, — x; values that exceed 6 > 0 for u —t < ¢ in theory.

Note that the optimal hedge need not produce lower liquidity costs than the non-optimal

strategies which are not constrained to produce non-negative approximation errors.
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23.

24.

25.

26.

The slightly smaller liquidity costs for the two day non-optimal fixed time hedge strategy,
versus its one day counterpart, result from being able to avoid certain intermediate trans-
actions. For example, an increase (decrease) in the geometric Brownian motion process
followed by a decrease (increase) to a similar level implies an intermediate transaction may
be ignored (at least reduced) by the non-optimal strategy with a larger A. This does
not contradict Lemma 1 which applies to optimal hedge strategies that super-replicate the

option as discussed after its proof.

It is inappropriate to infer implied volatilities for the optimal trading strategy using the
Black Scholes formula. Indeed, if the marketplace was aware of the optimal strategy,
then the Black Scholes formula would not be utilized to compute prices or infer implied
volatilities. Instead, obtaining an implied volatility for the optimal strategy requires an
iterative procedure that involves the dynamic program. In addition, the binomial structure
underlying the dynamic program requires smaller time intervals to ensure the corresponding
option prices have converged. Otherwise, their values may be below those computed using

the Black Scholes model as a result of the numerical approximation.

To clarify, z and y in equation (37) are not equal to z; and y; respectively in Section 4.
Instead, they refer to positions before the initial trade. Thus, y in equation (37) equals

215(0,0) + y1 + @S(0,0)2% and x = 0.

The only change in the portfolio holdings during the interval (¢ — 1,¢] occurs right after

time ¢t — 1.
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Figure 1: Plot of estimated a parameters each day of sample period from January 3, 1995 to
December 31, 1998 based on equation (15) for IBM, Federal Express (FDX) and Barnes & Noble
(BKS). The dotted line denotes the average daily stock price of the firm. These three companies
represent high, medium, and low liquidity firms with respect to NYSE stocks that have traded

CBOE options.
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Figure 2: Plot of estimated a parameters each day of sample period from January 3, 1995 to
December 31, 1998 based on equation (15) for GE and Reebok (RBK). The dotted line denotes

the average daily stock price of the firm. Note the inverse relationship between a and S(¢,0).
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Figure 3: Plot of the product «a(t) - S(t,0) each day of sample period from January 3, 1995 to
December 31, 1998 for IBM, FDX and BKS. The value of S(¢,0) is the average stock price on a

particular date according to transactions in the TAQ database.
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Figure 4: Plot of the product «(t) - S(¢,0) each day of sample period from January 3, 1995
to December 31, 1998 for GE and RBK. The value of S(¢,0) is the average stock price on a

particular date according to transactions in the TAQ database.
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Figure 5: Plots of the implied volatility across five different strike prices and two distinct ma-
turities when 25 options (each on 100 shares) are replicated. The plots above correspond to a
representative stock with a current price of $50 whose underlying volatility is 30% per annum. In
$5 increments, the strike price ranges from $40 to $60 (in-the-money to out-of-the-money) while
maturities of 30 and 90 days are considered. The o parameter is 1.25 x10™* per lot transacted
while the trading strategy consists of implementing the Black Scholes hedge parameters at fixed
time intervals of A = 2 days. The disparity between the 30% volatility and those implied from
option prices is the result of illiquidity. Specifically, the Black Scholes implied volatilities are
computed under the assumption of a perfectly liquid market (o = 0) for the underlying asset,
while option prices are increased by the liquidity cost of their replication. Consequently, higher

option prices induced by illiquidity generate an upward bias in their implied volatilities.
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Table 6: Implied volatility of options under the non-optimal Black Scholes trading strategies.
The Black Scholes implied volatility derived from option prices which account for the impact
of illiquidity in the fifth columns of Tables 4 and 5 are reported below. In addition, the true
underlying volatility from Table 1 utilized in generating the option prices is given for ease of
reference. Results for A = 1 day and # = 5 lots are nearly identical to those of 2 days and 10
lots reported below respectively.

Option Characteristics Implied Black Scholes Volatility
Company Option True Black Scholes Fixed Time  Black Scholes Random Time
Name Moneyness  Volatility A =2 days 6 = 10 lots
GE In 23.25% 23.91 23.94

At 23.25% 23.47 23.50
Out 23.25% 23.34 23.38
IBM In 30.93% 31.05 31.06
At 30.93% 31.00 31.01
Out 30.93% 30.98 30.99
FDX In 28.41% 29.00 29.02
At 28.41% 28.62 28.65
Out 28.41% 28.50 28.54
BKS In 37.39% 39.51 39.57
At 37.39% 37.88 37.95
Out 37.39% 37.57 37.63
RBK In 36.22% 38.10 38.17
At 36.22% 36.63 36.69

Out 36.22% 36.38 36.41
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