In this paper we provide Galtchouk-Kunita-Watanabe representation results in
the case where there are restrictions on the available information. This allows
to prove existence and uniqueness for linear backward stochastic differential
equations driven by a general c\`adl\`ag martingale under partial information.
Furthermore, we discuss an application to risk-minimization where we extend the
results of F\"ollmer and Sondermann (1986) to the partial information framework
and we show how our result fits in the approach of Schweizer (1994).Comment: 22 page