In the presence of quantum measurements with direct photon detection the
evolution of open quantum systems is usually described by stochastic master
equations with jumps. Heuristically, from these equations one can obtain
diffusion models as approximation. A necessary condition for a general
diffusion approximation for jump master equations is presented. This
approximation is rigorously proved by using techniques for Markov process which
are based upon the convergence of Markov generators and martingale problems.
This result is illustrated by rigorously obtaining the diffusion approximation
for homodyne and heterodyne detection.Comment: 15 page