27 research outputs found

    Gila River Flow Needs Assessment

    Get PDF
    The Nature Conservancy and a team of 14 academic partners (the project team) received funding from the Bureau of Reclamation’s WaterSMART program and the Desert Landscape Conservation Cooperative in 2012 to conduct this Gila River Flow Needs Assessment. The assessment describes the existing condition of the Gila River in the Cliff-Gila Valley and examines the potential impacts of CUFA diversion and climate change on the riparian and aquatic ecosystem. The project team was assisted by 35 academic, agency and consulting scientists who have expertise in some aspect of the Gila River’s hydrology and ecology. This larger team of scientists provided input on a review draft of this assessment at a workshop in January 2014. This assessment report includes 12 chapters written by project team scientists. Two chapters summarize workshop findings, including input of the larger team of scientists on how flows shape the ecosystem and how these interactions may be affected by flow alterations due to CUFA diversion and climate change

    Catastrophic wildfire and number of populations as factors influencing risk of extinction for Gila trout (Oncorhynchus gilae)

    Get PDF
    We used the computer program RAMAS to explore the sensitivity of an extinction-risk model for the Gila trout (Oncorhynchus gilae) to management of wildfires and number of populations of the species. The Gila trout is an endangered salmonid presently restricted to very few headwaters of the Gila and San Francisco river tributaries in southwestern New Mexico. Life history data for 10 extant populations were used to examine sensitivity of the species' viability to changes in a variety of factors including population size, fecundity, life stage structure, number of populations, severity and probability of forest fires, and a regulated fishery. The probability and severity of forest fires and number of populations had the greatest effect on viability. Results indicate that successful conservation of Gila trout requires establishment of additional populations and reduction of the severity of forest fires through a program incorporating more frequent, but less severe, fires.Peer reviewedZoolog

    Nasal Acai Polysaccharides Potentiate Innate Immunity to Protect against Pulmonary Francisella tularensis and Burkholderia pseudomallei Infections

    Get PDF
    Pulmonary Francisella tularensis and Burkholderia pseudomallei infections are highly lethal in untreated patients, and current antibiotic regimens are not always effective. Activating the innate immune system provides an alternative means of treating infection and can also complement antibiotic therapies. Several natural agonists were screened for their ability to enhance host resistance to infection, and polysaccharides derived from the Acai berry (Acai PS) were found to have potent abilities as an immunotherapeutic to treat F. tularensis and B. pseudomallei infections. In vitro, Acai PS impaired replication of Francisella in primary human macrophages co-cultured with autologous NK cells via augmentation of NK cell IFN-γ. Furthermore, Acai PS administered nasally before or after infection protected mice against type A F. tularensis aerosol challenge with survival rates up to 80%, and protection was still observed, albeit reduced, when mice were treated two days post-infection. Nasal Acai PS administration augmented intracellular expression of IFN-γ by NK cells in the lungs of F. tularensis-infected mice, and neutralization of IFN-γ ablated the protective effect of Acai PS. Likewise, nasal Acai PS treatment conferred protection against pulmonary infection with B. pseudomallei strain 1026b. Acai PS dramatically reduced the replication of B. pseudomallei in the lung and blocked bacterial dissemination to the spleen and liver. Nasal administration of Acai PS enhanced IFN-γ responses by NK and γδ T cells in the lungs, while neutralization of IFN-γ totally abrogated the protective effect of Acai PS against pulmonary B. pseudomallei infection. Collectively, these results demonstrate Acai PS is a potent innate immune agonist that can resolve F. tularensis and B. pseudomallei infections, suggesting this innate immune agonist has broad-spectrum activity against virulent intracellular pathogens

    Rio Grande Sucker Gila basin

    No full text
    Microsatellite data is provided for 10 loci in GenAlEx format. Population information is provided in column two of speadsheet--usats. Mitochondrial DNA haplotype information is provided for the 526 base pair fragment of ND4 and the 303 base pair fragment of cyt-b, samples are in the same order as the microsatellite fil

    Rio Grande Sucker Pantosteus plebeius is Native to the Gila River Basin

    No full text

    Data from: River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community

    No full text
    Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species’ genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise FST) while explicitly accounting for intraspecific demographic influences on effective population size (Ne). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of Ne was a strong predictor of pairwise FST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases
    corecore