125 research outputs found

    Evolution of alternative sex-determining mechanisms in teleost fishes

    Get PDF
    We compiled information from the literature on the taxonomic distributions in extant teleost fishes of alternative sex-determination systems: male-heterogametic (XY) gonochorism, female-heterogametic (ZW) gonochorism, hermaphroditism, unisexuality, and environmental dependency. Then, using recently published molecular phylogenies based on whole-genomic or partial mitochondrial DNA sequences, we inferred the histories and evolutionary transitions between these reproductive modes by employing maximum parsimony and maximum likelihood methods of phylogenetic character mapping. Across a broad teleost phylogeny involving 25 taxonomic orders, a highly patchy distribution of different sex-determination mechanisms was uncovered, implying numerous transitions between alternative modes, but this heterogeneity also precluded definitive statements about ancestral states for most clades. Closer inspection of family-level and genus-level phylogenies within each of four orders further bolstered the conclusion that shifts in sex-determining modes are evolutionarily frequent and involve a variety of distinct ancestral-descendant pathways. For possible reasons discussed herein, the evolutionary lability of sex-determining modes in fishes contrasts strikingly with the evolutionary conservatism of sex determination within both mammals and birds. © 2006 The Linnean Society of London

    No Intra-Locus Sexual Conflict over Reproductive Fitness or Ageing in Field Crickets

    Get PDF
    Differences in the ways in which males and females maximize evolutionary fitness can lead to intra-locus sexual conflict in which genes delivering fitness benefits to one sex are costly when expressed in the other. Trade-offs between current reproductive effort and future reproduction and survival are fundamental to the evolutionary biology of ageing. This leads to the prediction that sex differences in the optimization of age-dependent reproductive effort may generate intra-locus sexual conflict over ageing rates. Here we test for intra-locus sexual conflict over age-dependent reproductive effort and longevity in the black field cricket, Teleogryllus commodus. Using a half-sib breeding design, we show that the most important components of male and female reproductive effort (male calling effort and the number of eggs laid by females) were positively genetically correlated, especially in early adulthood. However, the genetic relationships between longevity and reproductive effort were different for males and females, leading to low genetic covariation between male and female longevity. The apparent absence of intra-locus sexual conflict over ageing suggests that male and female longevity can evolve largely independently of one another

    Extraordinary lifespans in ants: a test of evolutionary theories of ageing

    Get PDF
    Senescence presents not only a medical problem, but also an evolutionary paradox because it should be opposed by natural selection. Evolutionary hypotheses propose that ageing evolves as the necessary cost of processes increasing early reproductive success(1,2), or because of weaker selection against late-acting mutations(3). A prediction of these hypotheses is that the rate of ageing should increase and the average lifespan decrease as the rate of extrinsic mortality increases(1-7). Alternatively, non-adaptive, purely mechanistic hypotheses invoke damage to DNA, cells, tissues and organs as being the unique cause of senescence and ineluctable death of organisms(8). Here we show that the evolution of eusociality is associated with a 100-fold increase in insect lifespan. Such an increase is predicted by evolutionary theories because termite, bee and ant queens live in colonies that are sheltered and heavily defended against predators. Moreover, a comparison of ants with contrasting life histories also reveals an association between lifespan and extrinsic rate of mortality. These results provide strong support for evolutionary theories of ageing, as purely mechanistic hypotheses of senescence do not propose any association between the rate of extrinsic mortality and lifespans

    Evolution of Female Preference for Younger Males

    Get PDF
    Previous theoretical work has suggested that females should prefer to mate with older males, as older males should have higher fitness than the average fitness of the cohort into which they were born. However, studies in humans and model organisms have shown that as males age, they accumulate deleterious mutations in their germ-line at an ever-increasing rate, thereby reducing the quality of genes passed on to the next generation. Thus, older males may produce relatively poor-quality offspring. To better understand how male age influences female mate preference and offspring quality, we used a genetic algorithm model to study the effect of age-related increases in male genetic load on female mate preference. When we incorporate age-related increases in mutation load in males into our model, we find that females evolve a preference for younger males. Females in this model could determine a male's age, but not his inherited genotype nor his mutation load. Nevertheless, females evolved age-preferences that led them to mate with males that had low mutation loads, but showed no preference for males with respect to their somatic quality. These results suggest that germ-line quality, rather than somatic quality, should be the focus of female preference in good genes models

    Senescence Is More Important in the Natural Lives of Long- Than Short-Lived Mammals

    Get PDF
    Senescence has been widely detected among mammals, but its importance to fitness in wild populations remains controversial. According to evolutionary theories, senescence occurs at an age when selection is relatively weak, which in mammals can be predicted by adult survival rates. However, a recent analysis of senescence rates found more age-dependent mortalities in natural populations of longer lived mammal species. This has important implications to ageing research and for understanding the ecological relevance of senescence, yet so far these have not been widely appreciated. We re-address this question by comparing the mean and maximum life span of 125 mammal species. Specifically, we test the hypothesis that senescence occurs at a younger age relative to the mean natural life span in longer lived species.We show, using phylogenetically-informed generalised least squares models, a significant log-log relationship between mean life span, as calculated from estimates of adult survival for natural populations, and maximum recorded life span among mammals (R2=0.57, p<0.0001). This provides further support for a key prediction of evolutionary theories of ageing. The slope of this relationship (0.353+/-0.052 s.e.m.), however, indicated that mammals with higher survival rates have a mean life span representing a greater fraction of their potential maximum life span: the ratio of maximum to mean life span decreased significantly from >10 in short-lived to approximately 1.5 in long-lived mammal species.We interpret the ratio of maximum to mean life span to be an index of the likelihood an individual will experience senescence, which largely determines maximum life span. Our results suggest that senescence occurs at an earlier age relative to the mean life span, and therefore is experienced by more individuals and remains under selection pressure, in long- compared to short-lived mammals. A minimum rate of somatic degradation may ultimately limit the natural life span of mammals. Our results also indicate that senescence and modulating factors like oxidative stress are increasingly important to the fitness of longer lived mammals (and vice versa)

    The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission

    Get PDF
    Background : Mathematical models of tuberculosis (TB) transmission have been used to characterize disease dynamics, investigate the potential effects of public health interventions, and prioritize control measures. While previous work has addressed the mathematical description of TB natural history, the impact of demography on the behaviour of TB models has not been assessed. Methods : A simple model of TB transmission, with alternative assumptions about survivorship, is used to explore the effect of age structure on the prevalence of infection, disease, basic reproductive ratio and the projected impact of control interventions. We focus our analytic arguments on the differences between constant and exponentially distributed lifespans and use an individual-based model to investigate the range of behaviour arising from realistic distributions of survivorship. Results : The choice of age structure and natural (non-disease related) mortality strongly affects steady-state dynamics, parameter estimation and predictions about the effectiveness of control interventions. Since most individuals infected with TB develop an asymptomatic latent infection and never progress to active disease, we find that assuming a constant mortality rate results in a larger reproductive ratio and an overestimation of the effort required for disease control in comparison to using more realistic age-specific mortality rates. Conclusions : Demographic modelling assumptions should be considered in the interpretation of models of chronic infectious diseases such as TB. For simple models, we find that assuming constant lifetimes, rather than exponential lifetimes, produces dynamics more representative of models with realistic age structure

    The neck-region polymorphism of DC-SIGNR in peri-centenarian from Han Chinese Population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DC-SIGNR (also called CD209L) has been extensively studied on its role in host genetic predisposition to viral infection. In particular, variable number tandem repeat (VNTR) of the neck-region of DC-SIGNR is highly polymorphic and the polymorphism has been investigated for genetic predisposition to various infectious diseases, though conflicting results had been reported. As infection is a major cause of human death and a mechanism of natural selection, we hypothesized that VNTR polymorphism of DC-SIGNR might have an effect on human life span.</p> <p>Methods</p> <p>Here we collected 361 peri-centenarian individuals (age ≥94 for female and age ≥90 for male) and 342 geographically matched controls (age 22-53, mean 35.0 ± 12.0) from Han Chinese. The VNTR polymorphism of the neck region was determined by PCR and genotype was called by separating the PCR products in agarose gel.</p> <p>Results</p> <p>A total of 11 genotypes and 5 alleles were found in our population. The genotype distribution, allele frequencies and homozygote proportion did not show a significant difference between peri-centenarian and control group. As gender differences in lifespan are ubiquitously observed throughout the animal kingdom, we then stratified the samples by gender. There was more 6/7 genotypes in female peri-centenarian group than that in female control group, at a marginal level of significance (5.56 vs. 1.28%, p = 0.041). The difference was not significant after correction by Bonferroni method. It suggests a possible differential effect of DC-SIGNR VNTR genotypes between sexes. Further studies are warranted to confirm our preliminary findings and investigate the mechanisms of the underlying functions.</p> <p>Conclusions</p> <p>Our study indicated that there was absence of association between the neck region polymorphism of DC-SIGNR and longevity in Han Chinese population. But the question of whether the DC-SIGNR could affect longevity in a gender-specific pattern remains open.</p

    A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes), for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties.</p> <p>Results</p> <p>The main patterns discovered by the classification methods are as follows: (a) the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b) the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO) annotations; (c) GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d) interaction with the XRCC5 (Ku80) protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e) DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related.</p> <p>Conclusions</p> <p>The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.</p

    Costs of Reproduction and Terminal Investment by Females in a Semelparous Marsupial

    Get PDF
    Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20–40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females

    Increased Mortality Exposure within the Family Rather than Individual Mortality Experiences Triggers Faster Life-History Strategies in Historic Human Populations

    Get PDF
    Life History Theory predicts that extrinsic mortality risk is one of the most important factors shaping (human) life histories. Evidence from contemporary populations suggests that individuals confronted with high mortality environments show characteristic traits of fast life-history strategies: they marry and reproduce earlier, have shorter birth intervals and invest less in their offspring. However, little is known of the impact of mortality experiences on the speed of life histories in historical human populations with generally higher mortality risk, and on male life histories in particular. Furthermore, it remains unknown whether individual-level mortality experiences within the family have a greater effect on life-history decisions or family membership explains life-history variation. In a comparative approach using event history analyses, we study the impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within the natal family up to an individual's age of 15. Results show that the speed of life histories is not adjusted according to individual-level mortality experiences but is due to family-level effects. The general finding of lower ages at marriage/reproduction after exposure to higher mortality in the family holds for both females and males. This study provides evidence for the importance of the family environment for reproductive timing while individual-level mortality experiences seem to play only a minor role in reproductive life history decisions in humans
    corecore