78 research outputs found

    Hazard Analysis of Critical Control Points Assessment as a Tool to Respond to Emerging Infectious Disease Outbreaks

    Get PDF
    Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam’s domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam’s domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases

    Evidence of a high incidence of subclinically affected calves in a herd of cattle with fatal cases of Bovine Neonatal Pancytopenia (BNP).

    Get PDF
    BACKGROUND: Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by bone marrow trilineage hypoplasia, mediated by ingestion of alloantibodies in colostrum. Suspected subclinical forms of BNP have been reported, suggesting that observed clinical cases may not represent the full extent of the disease. However to date there are no objective data available on the incidence of subclinical disease or its temporal distribution. This study aimed to 1) ascertain whether subclinical BNP occurs and, if so, to determine the incidence on an affected farm and 2) determine whether there is evidence of temporal clustering of BNP cases on this farm. To achieve these aims, haematological screening of calves born on the farm during one calving season was carried out, utilising blood samples collected at defined ages. These data were then analysed in comparison to data from both known BNP-free control animals and histopathologically confirmed BNP cases. An ordinal logistic regression model was used to create a composite haematology score to predict the probabilities of calves being normal, based on their haematology measurements at 10–14 days old. RESULTS: This study revealed that 15% (21 of 139) of the clinically normal calves on this farm had profoundly abnormal haematology (<5% chance of being normal) and could be defined as affected by subclinical BNP. Together with clinical BNP cases, this gave the study farm a BNP incidence of 18%. Calves with BNP were found to be distributed throughout the calving period, with no clustering, and no significant differences in the date of birth of cases or subclinical cases were found compared to the rest of the calves. This study did not find any evidence of increased mortality or increased time from birth to sale in subclinical BNP calves but, as the study only involved a single farm and adverse effects may be determined by other inter-current diseases it remains possible that subclinical BNP has a detrimental impact on the health and productivity of calves under certain circumstances. CONCLUSIONS: Subclinical BNP was found to occur at a high incidence in a herd of cattle with fatal cases of BNP

    Genetic modification of Bluetongue virus by uptake of "synthetic" genome segments

    Get PDF
    Since 1998, several serotypes of Bluetongue virus (BTV) have invaded several southern European countries. In 2006, the unknown BTV serotype 8 (BTV8/net06) unexpectedly invaded North-West Europe and has resulted in the largest BT-outbreak ever recorded. More recently, in 2008 BTV serotype 6 was reported in the Netherlands and Germany. This virus, BTV6/net08, is closely related to modified-live vaccine virus serotype 6, except for genome segment S10. This genome segment is closer related to that of vaccine virus serotype 2, and therefore BTV6/net08 is considered as a result of reassortment. Research on orbiviruses has been hampered by the lack of a genetic modification method. Recently, reverse genetics has been developed for BTV based on ten in vitro synthesized genomic RNAs. Here, we describe a targeted single-gene modification system for BTV based on the uptake of a single in vitro synthesized viral positive-stranded RNA. cDNAs corresponding to BTV8/net06 genome segments S7 and S10 were obtained by gene synthesis and cloned downstream of the T7 RNA-polymerase promoter and upstream of a unique site for a restriction enzyme at the 3'-terminus for run-off transcription. Monolayers of BSR cells were infected by BTV6/net08, and subsequently transfected with purified in vitro synthesized, capped positive-stranded S7 or S10 RNA from BTV8/net06 origin. "Synthetic" reassortants were rescued by endpoint dilutions, and identified by serotype-specific PCR-assays for segment 2, and serogroup-specific PCRs followed by restriction enzyme analysis or sequencing for S7 and S10 segments. The targeted single-gene modification system can also be used to study functions of viral proteins by uptake of mutated genome segments. This method is also useful to generate mutant orbiviruses for other serogroups of the genus Orbivirus for which reverse genetics has not been developed yet

    Li Wenliang, a face to the frontline healthcare worker? The first doctor to notify the emergence of the SARS-CoV-2 (COVID-19) outbreak

    Get PDF
    Dr Li Wenliang, who lost his life to the novel coronavirus, SARS-CoV-2, became the face of the threat of SARS-CoV-2 to frontline workers, the clinicians taking care of patients. Li, 34, was an ophthalmologist at Wuhan Central Hospital. On 30th December, 2019, when the Wuhan municipal health service sent out an alert, he reportedly warned a closed group of ex-medical school classmates on the WeChat social media site of “Seven cases of severe acute respiratory syndrome (SARS) like illness with links with the Huanan Seafood Wholesale Market” at his hospital. He was among eight people reprimanded by security officers for “spreading rumours”. In a tragic turn of events, he subsequently contracted SARS-CoV-2 and, after a period in intensive care, died on the morning of Friday 7th February, 2020 (South China Morning Post, 2020). This case is a stark reminder of the risks of emerging disease outbreaks for healthcare workers (HCWs). Dr Li Wenliang’s name is added to the long list of HCW that were at the forefront of outbreaks of SARS, Ebola, MERS and now SARS-CoV-2. It is important to recognise that it was the clinicians in Wuhan who sounded the alarm about the emergence of SARS-CoV-2 which was rapidly identified after these clinicians sent samples to a reference laboratory for next generation sequencing (NGS) (Zhou et al., 2020)

    Changes in medicine course curricula in Brazil encouraged by the Program for the Promotion of Medical School Curricula (PROMED)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Program for the Promotion of Changes in Medical School Curricula (PROMED) was developed by the Brazilian Ministries of Health and Education. The objective of this program was to finance the implementation of changes to the curricula of medical schools directed towards the Brazilian national healthcare system (SUS). This paper reports research carried out together with the coordinators responsible for the PROMED of each medical school approved, in which interviews were used to evaluate whether this financial support succeeded in stimulating changes. The aim of this study was to evaluate the impact of this program three years after implementation in the universities that received funding.</p> <p>Methods</p> <p>The 19 course coordinators of the medical schools in which the PROMED project was implemented were interviewed using a questionnaire containing 12 questions for qualitative analysis. This paper focuses partially on the reports of the results of this qualitative analysis. Laurence Bardin's.</p> <p>Results</p> <p>The universities interviewed were found to have some common concerns: the decoupling of basic and professional training difficulties in achieving proximity to the network of services; insufficient funding; and the emphasis of most teachers being on teaching hospitals and specialization. These findings indicate that the direction of curriculum reform (PROMED) is toward providing a targeted training for this system.</p> <p>Conclusion</p> <p>The interviewees were aware that this program would trigger future changes in all aspects of healthcare and represents an ongoing challenge to the academic field. PROMED provided the momentum for change in the nature of medical training in Brazil and was seen as powerful enough to override other processes and as a basis for guidance regarding the methodology, pedagogical approach and scenarios of practical experience.</p

    Antibodies to Henipavirus or Henipa-Like Viruses in Domestic Pigs in Ghana, West Africa

    Get PDF
    Henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), have Pteropid bats as their known natural reservoirs. Antibodies against henipaviruses have been found in Eidolon helvum, an old world fruit bat species, and henipavirus-like nucleic acid has been detected in faecal samples from E. helvum in Ghana. The initial outbreak of NiV in Malaysia led to over 265 human encephalitis cases, including 105 deaths, with infected pigs acting as amplifier hosts for NiV during the outbreak. We detected non-neutralizing antibodies against viruses of the genus Henipavirus in approximately 5% of pig sera (N = 97) tested in Ghana, but not in a small sample of other domestic species sampled under a E. helvum roost. Although we did not detect neutralizing antibody, our results suggest prior exposure of the Ghana pig population to henipavirus(es). Because a wide diversity of henipavirus-like nucleic acid sequences have been found in Ghanaian E. helvum, we hypothesise that these pigs might have been infected by henipavirus(es) sufficiently divergent enough from HeVor NiV to produce cross-reactive, but not cross-neutralizing antibodies to HeV or NiV

    Does reservoir host mortality enhance transmission of West Nile virus?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since its 1999 emergence in New York City, West Nile virus (WNV) has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity".</p> <p>Results</p> <p>Inspection of the Ross-Macdonald expression of the basic reproductive number (<it>R</it><sub>0</sub>) suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission.</p> <p>Conclusion</p> <p>Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined.</p
    corecore