76,246 research outputs found

    Particle coating using foams and bubbles : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemical and Bioprocess Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    This thesis investigates powder coating using foams or bubbles. The work initially started on foams. Wettability studies first showed that foams can be used to coat powders. Research then focussed on the fundamental unit of foams, the bubble. An experimental apparatus was designed and built to perform particle-bubble impact studies in air. Bubble solutions comprised of water, hydroxypropyl methylcellulose (HPMC) and sodium dodecyl sulphate (SDS). Four distinct physical behaviours occur when a particle impacts a bubble: (i) particle capture, (ii) particle slide-off, (iii) bubble burst and (iv) bubble self-healing. The rate processes that occur during particle-bubble impact are; (i), surface area creation by bubble film stretching; (ii), delivery of surface active molecules to the newly created surface; and (iii), stress dissipation as the film is stretched. The ability of the solutions to do (ii) and (iii) are highly complex relying on the thermodynamic equilibrium of the solutions and the local perturbations in the near surface region. Therefore, establishing quantitative boundaries of behaviour is a difficult exercise. It is proposed that, for solutions above the cac or cmc, (critical aggregate concentration, critical micelle concentration) where self-healing occurs, the rate of (ii) > rate of (i) and the rate of (iii) > rate of (i). For solutions below the cac, where bursting occurs, the opposite is true, the rate of (ii) < rate of (i) and the rate of (iii) < rate of (i). Intermediate behaviours such as slide-off of capture are within the range of self-healing behaviours, but where the energy of the particle is insufficient to penetrate the bubble. These behaviours are explained by complexation theory. For SDS concentration ≥ cac and cmc, small aggregates of SDS and HPMC locally supply surfactant to the surface of the stretching bubble film. This maintains low surface tension stress and self-healing results. For SDS concentrations < cac, self-healing occurs because the complexation is a HPMC-SDS sea containing SDS islands. The HPMC-SDS sea structure is sufficiently interlinked to simply stretch with the film, while the SDS islands de-aggregate quickly in the near surface region to supply the newly created surface with surfactant. Here the supply rate is faster than the stretching and so the new surface area is populated with SDS molecules. In contrast bursting occurs when the complexation is HPMC-SDS islands in a SDS sea. Here, the rapid film extension is so fast that the islands of HPMC-SDS become isolated and the film loses structural homogeneity. Furthermore, the rate of new surface creation is too fast for diffusion of SDS molecules from the bulk ‘sea’ to the newly created surface. This results in both an inhomogeneous structure and local increases in surface tension, causing both stress concentration in the film and the Marangoni effect. Extensional viscosity measurements, conducted in collaboration with Monash University, Australia, produced three behaviours as solutions were thinned: bead-on-string, blob and long-lived filaments. Solutions which produced long lived filaments here correspond to those that self-healed during particle impact (when the impact velocity was sufficient). It is proposed that this long-lived filament behaviour is due to the SDS concentration being > cmc, where the SDS micelles act like ‘ball-bearings’ between the extending HPMC chains. Coatings were characterised by SEM and gravimetric measurement. Cross-sectional imaging of the soft particle that penetrated self-healing bubbles were found to have a continuous coating layer around the particle. Surface topography of bubble coated particles were compared with classical droplet coated single particles from the literature. Bubble coated particles were found to be smoother than the droplet coated particle. The knowledge gained here was used to suggest how an industrial-scale particle coater using bubbles may be designed

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Shear work induced changes in the rheology of model Mozzarella cheeses : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Manawatu, New Zealand

    Get PDF
    Mozzarella cheese is a pasta filata type of cheese. Its manufacture includes a kneading – stretching step that creates a fibrous protein network and distributes fat-serum channels to attain desirable melt functionality on a pizza. During processing and manufacturing of pasta-filata cheese, large deformations take place. For appropriate characterization of a food material, rheological evaluation should be conducted in similar operating conditions, length scales and time scales to those taking place in the actual process. Development of the typical fibrous pasta-filata structure of mozzarella cheese depends on composition and process variables. Critical process variables in the development of cheese structure are time, temperature and shear. In this study we studied the effect of shear work on rheology, structure and melt functionality of model Mozzarella cheese. Three types of model cheeses (full-fat, non-fat and full-fat with added tri-sodium citrate) were prepared by working cheese components together at 70 oC in a twin screw Blentech cooker. Varied amounts of shear work input (2.8-185 kJ/kg) were given to the cheese samples using 50, 150 and 250 rpm screw speeds. Samples were subjected to a range of rheological tests, confocal laser scanning microscopy, fat particle size measurements (DLS) and melt functionality evaluation. While measuring steady shear viscosity of Mozzarella-type cheeses in a rotational rheometer at 70oC, three main difficulties were encountered; wall slip, structural failure during measurement and viscoelastic time dependent effects. A flow curve method was successfully devised to measure steady shear rheology by using serrated plates as surface modification to avoid wall slip, giving enough measurement duration at low shear rate to avoid viscoelastic effects and selecting limited shear steps to cause minimum structural changes. These techniques enabled successful measurement of steady shear viscosity of molten Mozzarella-type cheeses at 70oC at shear rates up to 250 s-1. Strong work thickening was observed for full fat Mozzarella cheese from steady shear rheology, oscillatory rheology, creep, elongational viscosity and tensile testing data. Steady shear rheology and melt functionality were found to be strongly dependent on total shear work input. An exponential increase in consistency coefficient (K from power law model) was observed with increasing amounts of accumulated shear work, indicating work thickening behaviour. An exponential work thickening equation is proposed to describe this behaviour. Excessively worked cheese samples exhibited liquid exudation, poor melting and poor stretch. Nonfat cheese exhibited similar but smaller changes after excessive shear work input. At lower shear work inputs (70 kJ/kg) it behaved like a viscoelastic solid with low frequency dependence. A definite critical point for structural and viscoelastic transition was identified at a medium shear work level (~ 58 kJ/kg at 150 rpm). Similar viscoelastic property changes occurred in non-fat cheese suggesting that major changes were taking place in the protein matrix during working. Confocal microstructures plus macroscopic observations showed systematic changes in structure with increased shear work inputs with unmixed buttery liquid observed at 58 kJ/kg. At very high shear work inputs, > 75 kJ/kg, striations or anisotropy in the microstructures had disappeared and small micro-cracks were evident. Volume-weighted mean fat particle size decreased with shear work input and particle size distributions also changed. To account for the short and long term relaxation response behaviour, a 4-element Burger‘s model was found adequate for fitting the creep data of model cheese at 70 oC but a 6-element model was required at 20 oC. As shear work input increased, retarded compliance decreased and zero shear viscosity increased indicating the more elastic behavior of the cheeses with higher shear work input. Fracture stress and strain for longitudinal samples from elongated full fat cheese did not vary significantly with shear work input up to 26.3 kJ/kg then decreased dramatically at 58.2 kJ/kg. Longitudinal samples with shear work input <30 kJ/kg, demonstrated significant strain hardening. At shear work inputs <30 kJ/kg strong anisotropy was observed in both fracture stress and strain. After a shear work input of 58.2 kJ/kg anisotropy and strain hardening were absent. Perpendicular samples did not show strain hardening at any level of shear work input. A good correlation was found between the steady shear, oscillatory shear and transient rheological properties and the melting properties of the cheeses. The order for the rheological properties in terms of their sensitivity towards both shear work input and melt functionality is ηapp > G‘ > elongational viscosity > consistency coefficient, K. It was concluded that the dominant contributor to the changes in rheology, structure and melt properties with increased shear work was shear induced structural changes to the protein matrix. An increase in calcium induced protein-protein interactions after high shear work at 70 oC. In summary, this thesis provides useful insights to shear work induced changes in material properties. It proposes useful linkages between the manufacturing process and the application of model Mozzarella cheese using appropriate rheological methods. Since the linkages were validated for only one composition and in only one processing environment, it is proposed that they should be tested in other conditions. In order to build a more complete picture, a molecular level study is proposed for future work to elucidate chemical changes during working and find appropriate linkages with physical and functional characteristics

    Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes.

    Get PDF
    OBJECTIVES: The aim of this study was to investigate the clinical outcomes of patients deferred from coronary revascularization on the basis of instantaneous wave-free ratio (iFR) or fractional flow reserve (FFR) measurements in stable angina pectoris (SAP) and acute coronary syndromes (ACS). BACKGROUND: Assessment of coronary stenosis severity with pressure guidewires is recommended to determine the need for myocardial revascularization. METHODS: The safety of deferral of coronary revascularization in the pooled per-protocol population (n = 4,486) of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate Stenosis to Guide Revascularisation) and iFR-SWEDEHEART (Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve in Patients With Stable Angina Pectoris or Acute Coronary Syndrome) randomized clinical trials was investigated. Patients were stratified according to revascularization decision making on the basis of iFR or FFR and to clinical presentation (SAP or ACS). The primary endpoint was major adverse cardiac events (MACE), defined as the composite of all-cause death, nonfatal myocardial infarction, or unplanned revascularization at 1 year. RESULTS: Coronary revascularization was deferred in 2,130 patients. Deferral was performed in 1,117 patients (50%) in the iFR group and 1,013 patients (45%) in the FFR group (p < 0.01). At 1 year, the MACE rate in the deferred population was similar between the iFR and FFR groups (4.12% vs. 4.05%; fully adjusted hazard ratio: 1.13; 95% confidence interval: 0.72 to 1.79; p = 0.60). A clinical presentation with ACS was associated with a higher MACE rate compared with SAP in deferred patients (5.91% vs. 3.64% in ACS and SAP, respectively; fully adjusted hazard ratio: 0.61 in favor of SAP; 95% confidence interval: 0.38 to 0.99; p = 0.04). CONCLUSIONS: Overall, deferral of revascularization is equally safe with both iFR and FFR, with a low MACE rate of about 4%. Lesions were more frequently deferred when iFR was used to assess physiological significance. In deferred patients presenting with ACS, the event rate was significantly increased compared with SAP at 1 year.info:eu-repo/semantics/publishedVersio

    Accounting of nitrogen attenuation in agricultural catchments : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figure 2.1 has been removed for copyright reasons but may be accessed through the source listed in the References.The transport and fate of the nitrate that leaches from the root zone of farms, via groundwaters, to receiving surface waters is poorly understood, particularly for New Zealand’s agricultural catchments. Monitoring nitrate concentrations in rivers clearly demonstrates that not all of the nitrate leached across the catchment enters the river. As nitrate moves from land to receiving waters there is potential for subsurface denitrification and hence the attenuation of the nitrate flux to receiving surface waters. A good understanding of the influence of catchment characteristics on the spatial variations of nitrate attenuation is essential for targeted and effective water quality outcomes across agricultural landscapes. This thesis analysed large datasets of geographical information (land use, soils and geology) and water quality records at 20 sites in two large agricultural catchments, the Tararua and Rangitikei, which are located in the lower parts of the North Island New Zealand. The results demonstrated that the influence of land use on river soluble inorganic nitrogen (SIN) concentrations in the Tararua catchment was outweighed by other catchment characteristics such as soil type and hydrological indices. A simple approach, that is not data-intensive, was developed and applied to quantify the capacity of a catchment to attenuate nitrogen. The nitrogen attenuation factor (AFN) is a key component of this approach. AFN is defined as the average annual land use nitrogen leaching losses minus the average annual river SIN river loads, divided by the average annual land use nitrogen leaching losses. AFN was determined for 5 and 15 sub-catchments in the Rangitikei and Tararua catchments, respectively, and was found to be highly spatially variable with values ranging from 0.14 to 0.94. To assess the uncertainty associated with AFN, the uncertainty in the average annual river SIN loads was evaluated. Five load calculation methods (global mean GM, rating curve RC, ratio estimator RE, flow-stratified FS, and flow-weighted FW) and four sampling frequencies (2 days, weekly, fortnightly, and monthly) were investigated to calculate average annual river loads at one of the long-term, representative water quality monitoring sites in the study catchment. The FS method using a monthly sampling frequency resulted in the lowest bias (0.9%) for average annual river SIN loads and therefore was used in the quantification of AFN across the study catchments. A robust uncertainty analysis of AFN showed two distinct groups of sub-catchments; sub-catchments with higher (>0.7) and less uncertain nitrogen attenuation factors, and sub-catchments with lower (<0.4) and more uncertain nitrogen attenuation factors. This supports the use and applicability of AFN as a sub-catchment descriptor of the capacity of a sub-catchment to attenuate nitrogen. AFN was positively related to poorly drained soils and mudstones, and negatively related to well-drained soils and gravels in the study catchments. A novel but simple hydrogeologic-based model was developed to evaluate the potential to use soil and rock indices to predict average annual river SIN loads from different land uses in a catchment. Four different versions of the model (uniform nitrogen attenuation, variable nitrogen attenuation based on soil indices only; variable nitrogen attenuation based on rock indices only; and variable nitrogen attenuation based on both soil and rock indices) were developed. Accounting for the spatial distribution of the nitrogen attenuation capacities of both soils and rocks resulted in markedly better predictions of river SIN loads in the Tararua and Rangitikei sub-catchments. The novel findings of this thesis clearly suggest that effective and targeted measures to improve water quality at a catchment scale should account not only for land use but also for other catchment characteristics, such as the subsurface nitrogen attenuation capacity. This new knowledge will be instrumental in the future development of the models and planning tools required to reduce the detrimental impacts of agriculture, by aligning spatially intensive land use practices with high nitrogen attenuation pathways in sensitive agricultural catchments

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Tracing sources of cadmium in agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a biotoxic heavy metal, which is accumulated by plants and animals and thereby enters the human food chain (Gray et al. 2003). The application of phosphate fertilisers has also resulted in the long-term accumulation of Cd in agricultural soils around the world, including New Zealand (NZ). In 1997, the main source of NZ phosphate fertilisers was changed from Nauru island phosphate rocks (450 mg Cd kg-1 P) to a variety of phosphate rocks with lower Cd concentrations, in order to meet more stringent Cd limits in P fertiliser. Following this change, the accumulation of Cd in topsoil samples from the Winchmore research farm (South Island, NZ) was evaluated and was found to have plateaued post-2000 (McDowell, 2012). In this study, stable isotope analysis was used to trace the fate of Cd in Winchmore farm soils in order to determine the cause of the plateau. The isotope ratio of Cd (δ114/110Cd) was measured in pre-2000 and post-2000 phosphate fertilisers, phosphate rocks, topsoil (0-7.5 cm) and control (unfertilised) subsoil (25-30 cm) samples from the Winchmore site. The analysed topsoil samples were archived samples collected over the period 1959-2015. The isotopic compositions of fertilised topsoils ranged from δ114/110Cd = 0.08 ± 0.03 to δ114/110Cd = 0.27 ± 0.04, which were comparable to pre-2000 fertilisers (δ114/110Cd = 0.10 ± 0.05 to 0.25 ± 0.04) but distinct from the post-2000 fertilisers (δ114/110Cd range of -0.17 ± 0.03 to 0.01 ± 0.05) and control subsoil (δ114/110Cd = -0.33 ± 0.04) (Salmanzadeh et al., 2017). We combined this stable isotope data with Bayesian modelling to estimate the contribution of different sources of Cd. An open source Bayesian isotope mixing model implemented in Matlab (Arendt et al., 2015) was used here with some modifications to estimate the fractional contribution of different sources of Cd through time including pre- and post-2000 fertilisers, and the control soil. The Matlab code of Arendt et al., 2015 was modified to consider only one isotope system (rather than two), and fewer sources. This modelling confirmed the dominant contribution (about 80%) of Nauru-derived (i.e. pre-2000) fertilisers in increasing the Cd concentration in Winchmore soils. To help constrain the soil Cd mass balance we used an existing model (CadBal) (Roberts and Longhurst, 2005), to estimate residual soil Cd and output fluxes based on known P fertiliser application rates, the initial Cd concentration, farm and soil type, and soil dry bulk density. We incorporated the isotope data into the mass balance expression in order to evaluate the performance of CadBal in estimating the past topsoil Cd accumulation and predicting the future concentrations and isotope ratios of Cd (up to 2030 AD). The results of mass balance modelling confirm that recent applications of phosphate fertilisers have not resulted in an accumulation of Cd during the most recent period, thus Cd removal by either leaching or crop uptake has increased, which is consistent with the modelled isotope data (Figure 1). We can conclude that it becomes possible to distinguish the sources of Cd within the soil using stable Cd isotopes (Imseng et al., 2018) and that the residual Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers (Salmanzadeh et al., 2017). One implication of this finding is that the contemporary applications of phosphate fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility, and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country. Figure 1. Results of Cd mass balance modelling in CadBal for the period of topsoil fertilisation including a prediction up to the year 2030 AD. (a) Mean concentration of Cd in the dryland treatment of Winchmore long-term irrigation trial (symbols) and the CadBal model (lines) outputs (red symbols = this study- plot 15 of Winchmore site; grey symbols = McDowell study-average of all plots; solid black line = dryland optimized CadBal from McDowell (2012) for all irrigation plots; black dashed line = Plot 15 dryland optimized CadBal-this study, first scenario; blue line = Plot 15 dryland optimized CadBal-this study, second scenario; red line = Plot 15 dryland optimized CadBal-this study, third scenario; red dashed line = Plot 15 dryland optimized CadBal-this study, fourth scenario); (b) Measured and modelled Cd isotope ratios based on CadBal outputs, isotope ratios measured in fertilisers and the fractionation factors of Wiggenhauser, et al. (2016); lines designate modelling scenarios as in (a), red dots are the third scenario with no fractionation (α factor not applied); (c) modeled scenario 3 (solid) and scenario 4 (dashed) isotope ratios in topsoil (red lines), leachate (blue lines) and pasture (green lines)

    Characterisation of denitrification in the subsurface environment of the Manawatū catchment, New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Earth Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figures 2.1 & 2.2 have been removed for copyright reasons but may be accessed via their source listed in the References (Rivett et al., 2008, Fig. 2 & Saggar et al., 2013, Fig. 3).A sound understanding of the quantity of nitrate lost from agricultural soils, as well as their transport and transformation in soil-water systems is essential for targeted and effective management and/or mitigation of their impacts on the quality of receiving waters. However, there is currently little known about the occurrence, variability, or factors affecting, nitrate attenuation by subsurface (below the root zone) denitrification in New Zealand, particularly in the Manawatū River catchment. This thesis developed and applied a combination of regional- and local-scale hydrogeochemical surveys and experiments, to gain an insight into the occurrence, variability, and hydrogeological features of subsurface denitrification in the Manawatū River catchment, particularly in the Tararua Groundwater Management Zone (GWMZ). A regional survey and analysis of samples from 56 groundwater wells conducted in the Tararua GWMZ revealed mainly oxic groundwater with low denitrification potential in the southern part of the catchment (Mangatainoka sub-catchment), whereas mainly anoxic/reduced groundwaters with high potential to denitrify in the middle and northern parts (Upper Manawatū sub-catchments). Oxic groundwaters with enriched nitrate concentrations were generally correlated with coarse textured soil types and aquifer materials (e.g., well-drained soil, gravel rock type), allowing faster movement of percolating water and oxygen diffusion from surface to subsurface environments. Local-scale laboratory incubations and in-field, push-pull test techniques were evaluated and optimised to measure and quantify denitrification in unsaturated (vadose) and saturated (shallow groundwater) parts of the subsurface environment. A novel incubation technique using vacuum pouches was found to be more reliable than traditional Erlenmeyer flasks in determining denitrifying enzyme activity (DEA) in subsurface soils (>0.3 m depth) with low denitrification activity. A combination of 75 μg N g-1 dry soil and 400 μg C g-1 dry soil was also found to provide the optimum DEA in subsurface soils. In the evaluation of the push-pull test, denitrification rates estimated using the measurements of denitrification reactant (nitrate) were found to be significantly higher (6 to 60 times) as compared to the rates estimated using the measurements of denitrification product (nitrous oxide). The estimates of denitrification rates also differed depending on whether a zero-order or first-order kinetic model was assumed. However, either a zero-order or a first-order model appears to be valid to estimate the denitrification rate from push-pull test data. The optimised laboratory incubation technique and in-field, push-pull test were applied at four sites with contrasting redox properties; Palmerston North, Pahiatua, Woodville, and Dannevirke. The incubation technique revealed that denitrification potential in terms of DEA is highest in the surface soil and generally decreased with soil depth. The push-pull test measured large denitrification rates of 0.04 to 1.07 mg N L-1 h-1 in the reduced groundwaters at depths of 4.5-7.5 m below ground level at two of the sites (Woodville and Palmerston North), whereas there were no clear indications of denitrification in the oxidised shallow groundwaters at the other two sites (Pahiatua and Dannevirke). This new knowledge, information and techniques advance our scientific capability to assess and map subsurface denitrification potential for targeted and effective land use planning and water quality measures in the Manawatū catchment and other catchments across New Zealand’s agricultural landscapes and worldwide
    • …
    corecore