

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of Denitrification in the Subsurface Environment of the Manawatū Catchment, New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Earth Science

at Massey University, Palmerston North,

New Zealand

Aldrin Alameda Rivas

2018

ABSTRACT

A sound understanding of the quantity of nitrate lost from agricultural soils, as well as their transport and transformation in soil-water systems is essential for targeted and effective management and/or mitigation of their impacts on the quality of receiving waters. However, there is currently little known about the occurrence, variability, or factors affecting, nitrate attenuation by subsurface (below the root zone) denitrification in New Zealand, particularly in the Manawatū River catchment. This thesis developed and applied a combination of regional- and local-scale hydrogeochemical surveys and experiments, to gain an insight into the occurrence, variability, and hydrogeological features of subsurface denitrification in the Manawatū River catchment, particularly in the Tararua Groundwater Management Zone (GWMZ).

A regional survey and analysis of samples from 56 groundwater wells conducted in the Tararua GWMZ revealed mainly oxic groundwater with low denitrification potential in the southern part of the catchment (Mangatainoka sub-catchment), whereas mainly anoxic/reduced groundwaters with high potential to denitrify in the middle and northern parts (Upper Manawatū sub-catchments). Oxic groundwaters with enriched nitrate concentrations were generally correlated with coarse textured soil types and aquifer materials (e.g., well-drained soil, gravel rock type), allowing faster movement of percolating water and oxygen diffusion from surface to subsurface environments.

Local-scale laboratory incubations and in-field, push-pull test techniques were evaluated and optimised to measure and quantify denitrification in unsaturated (vadose) and saturated (shallow groundwater) parts of the subsurface environment. A novel incubation technique using vacuum pouches was found to be more reliable than traditional Erlenmeyer flasks in determining denitrifying enzyme activity (DEA) in subsurface soils (>0.3 m depth) with low denitrification activity. A combination of 75 μ g N g⁻¹ dry soil and 400 μ g C g⁻¹ dry soil was also found to provide the optimum DEA in subsurface soils. In the evaluation of the push-pull test, denitrification rates estimated using the measurements of denitrification reactant (nitrate) were found to be significantly higher (6 to 60 times) as compared to the rates estimated using the measurements of denitrification rates of denitrification product (nitrous oxide). The estimates of denitrification rates also differed depending on whether a zero-order or first-order kinetic model was assumed. However, either a zero-order or a first-order model appears to be valid to estimate the denitrification rate from push-pull test data.

The optimised laboratory incubation technique and in-field, push-pull test were applied at four sites with contrasting redox properties; Palmerston North, Pahiatua, Woodville, and Dannevirke. The incubation technique revealed that denitrification potential in terms of DEA is highest in the surface soil and generally decreased with soil depth. The push-pull test measured large denitrification rates of 0.04 to 1.07 mg N L⁻¹ h⁻¹ in the reduced groundwaters at depths of 4.5-7.5 m below ground level at two of the sites (Woodville and Palmerston North), whereas there were no clear indications of denitrification in the oxidised shallow groundwaters at the other two sites (Pahiatua and Dannevirke).

This new knowledge, information and techniques advance our scientific capability to assess and map subsurface denitrification potential for targeted and effective land use planning and water quality measures in the Manawatū catchment and other catchments across New Zealand's agricultural landscapes and worldwide.

ACKNOWLEDGEMENTS

With deep gratitude, I sincerely thank my chief supervisor Dr. Ranvir Singh for the guidance, patience, support, encouragement, scientific inputs, constructive criticism and advice he has given me throughout this research. No amount of thanks is sufficient to acknowledge his contributions. I am also deeply grateful to my co-supervisors, A/Prof. Dave Horne and Dr. Jon Roygard, for the support and advice they have given me and their scientific inputs during the course of this study and in writing the thesis.

I sincerely thank the Institute of Agriculture and Environment at Massey University for the scholarship that made this study possible. Financial and in-kind support from the Horizons Regional Council is also highly appreciated. I also thank additional financial support provided by the University through the Massey Doctoral Completion Bursary, the Ravensdown Agricultural Research Scholarship, and the DG Bowler Scholarship.

I am very grateful for the support provided by the Soil and Earth Sciences Group. Firstly, I thank Prof. Mike Hedley, Group Head, for the support and all the scientific inputs that improved this thesis. I would like to especially mention David Feek for fabricating the tools and materials required for this research, for his help with the field work, and at the same time for being a good friend. Sincere thanks are extended to Ian Furkert, Dr. Peter Bishop, Dr. Paramsothy Jeyakumar, Glenys Wallace, Dr. James Hanly, Ross Wallace, Bob Toes, and Dr. Anja Moebis for the support they provided me with the field and laboratory work. I also thank Dr. Alan Palmer and A/Prof. Bob Stewart for their scientific inputs. I also thank the Ecology Group, and in particular Paul Barrett, for allowing me to use a temperature-controlled room for my experiments. I am also grateful to Liza Haarhoff, Sandra Dunkinson, and Denise Stewart for the kind support on administrative matters that keep things smooth.

At the Horizons Regional Council, I especially thank Abby Matthews, Amy Shears, and Manas Chakraborty for all the support they provided me. I also thank Steve Packer and Jeane Ramponi for their assistance.

I deeply thank the land owners who kindly allowed me to conduct research on their farms or collect water samples from their well/s.

I thank my good friends at Massey who made the challenging roller coaster journey of a doctoral study an enjoyable and memorable one: Ahmed Elwan, Qinhua Shen, Stephen Collins, Neha Jha, May Sasikunya, Ainul Mahmud, Khadija Malik, Hamed Khan and many others. I also thank fellow Filipino postgrad students at Massey especially Maricar Arpa and Patrick Espanto for their support and friendship. I also thank my brothers and sisters in the Kapatiran Prayer Fellowship for being my extended family in Palmerston North that made my stay in Palmerston North more meaningful, even being away from my family. The same is true for the Couples for Christ community in Hamilton.

Thanks to my colleagues at Lincoln Agritech Ltd for their kind support and encouragement as I was nearing completion of this thesis.

I thank my wife, Jocel, for the love, understanding and support she provided me throughout this journey. I also thank my Mom and my siblings for their support and encouragement.

Finally and most importantly, I thank the Almighty Father for the wisdom and strength He provided me during these times. May His Name be praised and glorified, always.

PUBLICATIONS AND PRESENTATIONS

Peer-reviewed International Journal

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M.J., 2017. Denitrification potential in the subsurface environment in the Manawatu River catchment, New Zealand: Indications from oxidation-reduction conditions, hydrogeological factors, and implications for nutrient management. *Journal of Environmental Management 197*, 476–489. doi:10.1016/j.jenvman.2017.04.015

Rivas, A., Singh, R., Bishop, P., Horne, D., Roygard, J., Hedley, M.J., 2018. A novel acetylene inhibition incubation technique for accurate quantification of denitrifying enzyme activity in subsurface soils. *Soil Biology & Biochemistry* (submitted, under revision).

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M.J., 2018. Quantification of denitrification rate in shallow groundwater using the single-well push-pull test technique. *Journal of Contaminant Hydrology* (submitted, under revision).

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M.J., 2018. Contrasting Denitrification Characteristics in the Vadose Zone and Shallow Groundwater Beneath Temperate Pasture Lands and their Implications for Nutrient Management in Agricultural Landscapes. *Journal of Environmental Quality* (in preparation).

Published Conference Proceedings (presented by A. Rivas)

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M., 2015. An assessment of the denitrification potential in shallow groundwaters of the Manawatu River catchment. In: *Moving farm systems to improved attenuation*. (Eds L.D. Currie and L.L Burkitt). <u>http://flrc.massey.ac.nz/publications.html.</u> Occasional Report No. 28. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 15 pages.

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., & Hedley, M., 2014. Characterization of denitrification in the subsurface environment of the Manawatu River catchment, New Zealand. In *Proceedings of the 21st Century Watershed Technology Conference and Workshop*, American Society of Agricultural and Biological Engineers (ASABE), The University of Waikato, Hamilton, New Zealand. DOI: 10.13031/wtcw.2014-029.

Rivas, A., Singh, R., Bishop, P., Horne, D., Roygard, J., Hedley, M., 2014. Measuring denitrification in the subsurface environment of Manawatu River catchment. In: *Nutrient management for the farm, catchment and community.* (Eds L.D. Currie and C L. Christensen). <u>http://flrc.massey.ac.nz/publications.html.</u> Occasional Report No. 27. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 13 pages.

Published Conference Abstracts (presented by A. Rivas)

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M., 2016. Variability in denitrification characteristics of the vadose and saturated zones in the Manawatu River catchment. In: *Integrated nutrient and water management for sustainable farming*. (Eds L. D. Currie and R. Singh). http://flrc.massey.ac.nz/publications.html. Occasional Report No. 29. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M., 2015. Variability in Hydrogeochemical Conditions in Shallow Groundwater in the Manawatu River Catchment and Implications for Denitrification Potential. In: *NZ Hydrological Society Annual Conference: From Data to Knowledge*. NZ Hydrological Society, Hamilton, New Zealand, pp. 163–164.

Rivas, A., Singh, R., Horne, D., Roygard, J., Matthews, A., Hedley, M., 2014. Indications of denitrification potential and occurrence in groundwater in the Manawatu catchment. In: *NZ Hydrological Society Annual Conference: Integration: 'The Final Frontier'*. NZ Hydrological Society, Marlborough, New Zealand, pp. 225.

Rivas, A., Singh, R., Horne, D., Bishop, P., Hedley, M., Roygard, J., 2013. Evaluation of Acetylene Inhibition Method to Measure Denitrification in Unsaturated Zone. In: *Joint Conference of the NZ Hydrological Society and the Meteorological Society of NZ: Water & Weather: Solutions for Health, Wealth & Environment*. NZ Hydrological Society, Palmerston North, New Zealand, pp. 183-184.

Contributions in other research outputs related to PhD research work

Peer-Reviewed publication:

Collins, S. B., Singh, R., **Rivas, A.**, Palmer, A., Horne, D., Roygard, J., Matthews, A., 2017. Transport and potential attenuation of nitrogen in shallow groundwaters in the Lower Rangitikei catchment, New Zealand. *Journal of Contaminant Hydrology 206*, 55-66.

Published Conference Proceedings (full paper):

Collins, S. B., Singh, R., **Rivas, A.**, Palmer, A., Horne, D., Roygard, J., Matthews, A., 2016. Assessment of nitrogen flow pathways and its potential attenuation in shallow groundwaters in the Lower Rangitikei catchment. In: *Integrated nutrient and water management for sustainable farming*. (Eds L. D. Currie and R. Singh). http://flrc.massey.ac.nz/publications.html. Occasional Report No. 29. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 14 pages.

Singh, R., **Rivas, A.**, Espanto, P., Elwan, A., Horne, D., Roygard, J., Matthews, A., Clothier, B., 2014. Assessment of transport and transformation of nitrogen in the subsurface environment of Manawatu River Catchment – work in progress. In *Nutrient management for the farm, catchment and community*. L. D. Currie and C L. Christensen, eds. Occasional

Report No. 27. Palmerston North, New Zealand: Fertilizer and Lime Research Centre, Massey University.

Published Conference Abstracts:

Singh, R., Horne, D., Elwan, A., **Rivas, A.**, Roygard, J., Hedley, M. 2018. Influence of soil types and underlying geology on transport and transformation of nitrate in subsurface environment. *Soil science: beyond food and fuel. 21st World Congress of Soil Science*, 12-17 August 2018, Rio de Janeiro, Brazil. (submitted)

McGowan, P., Singh, R., **Rivas, A.**, Elwan, A., Palmer, A., Horne, D., Collins, S., Matthews, A., 2017. Redox characteristics of shallow groundwater in the Tararua Groundwater Management Zone. In: *New Zealand Hydrological Society Annual Conference: Filling the Knowledge Reservoir*. NZ Hydrological Society, Napier, New Zealand, pp. 139-140.

Singh, R., Horne, D., Elwan, A., **Rivas, A.**, Manderson, A., Roygard, J., and Hedley, M., 2017. Assessing and matching landuse with land suitability – the model development and landuse implications. In the proceedings of the international conference '*Innovative Solutions for Sustainable Nitrogen Management*', June 26-30, Aarhus, Denmark. <u>http://sustainablenconference.dnmark.org/?page_id=298</u>

Collins, S., Singh, R., **Rivas, A.**, Palmer, A., Horne, D., Roygard, J. & Matthews, A., 2015. Transport and fate of nitrogen in the Lower Rangitikei Catchment. In: *NZ Hydrological Society Annual Conference: From Data to Knowledge*. NZ Hydrological Society, Hamilton, New Zealand.

Singh, R., **Rivas, A.**, Elwan, A., Heather, M., Horne, D.J., Burkitt, L., Morgenstern, U., Roygard, J., Matthews, A., Clothier, B., & Hedley, M. 2015. Research for catchment attenuation processes: advancing knowledge and tools to account for nitrogen transport and transformation in NZ agricultural catchments. In the proceedings of the international conference *'Catchment Science 2015'*, September 28-30th, 2015, Wexford, Ireland. <u>http://www.teagasc.ie/agcatchments/cs2015/Presentations/Singh_R.pdf</u>

Singh, R., **Rivas, A.**, Elwan, A., Horne, D.J., Burkitt, L., Roygard, J., Matthews, A., Clothier, B., & Hedley, M. 2015. Assessment of nitrogen attenuation in the subsurface environment of Manawatu River catchment, New Zealand. In the proceedings of the international conference *'Land Use and Water Quality 2015'*, September 21-24th, 2015, Vienna, Austria. <u>http://web.natur.cuni.cz/luwq2015/download/oral/246_Singh%20et%20al._LuWQ20</u>15_Manawatu%20Denitrification%20Case%20Study_Sept%202015.pdf

TABLE OF CONTENTS

ABSTR	ACT		i
ACKNO	OWLED	GEMENTS	iii
PUBLIC	CATION	S AND PRESENTATIONS	v
TABLE	OF CO	NTENTS	ix
LIST O	FTABL	ES	xiii
LIST O	F FIGUR	RES	XV
LIST O	F ABBR	EVIATIONS AND SYMBOLS	XX
CHAPT	'ER 1		1
INTRO	DUCTIC	DN	1
1.1	Backgr	ound	1
1.2	Rationa	ale of the Study	4
1.3	Study A	Area	6
1.4	Researc	ch Objectives	7
1.5	Thesis	Structure	8
CHAPT	ER 2		11
DENIT	RIFICAT	TION IN THE SUBSURFACE ENVIRONMENT – A REVIEW OF IT	S
PROCE	SSES, II RIFICAT	NFLUENCING FACTORS, MEASUREMENT APPROACHES, AND	11
2.1	Introdu	ction	11
2.2	Nitrate	and Its Attenuation in the Subsurface Environment	11
	2.2.1	Nitrate in the subsurface environment	11
	2.2.2	Nitrate attenuation processes in the subsurface environment	14
	2.2.3	Factors affecting denitrification	18
2.3	Denitri	fication in the Vadose Zone	30
	2.3.1	Significance of denitrification in the vadose zone	30
	2.3.2	Implications for research	32
2.4	Denitri	fication in the Saturated Zone	38
	2.4.1	Saturated zone or groundwater as a pathway of nitrate attenuation an	d/or
	contam	ination	
	2.4.2	Variability of denitrification in the saturated zone (i.e., groundwater). Implications for research	40
2.5	Measur	ing Denitrification in the Subsurface Environment	44
	2.5.1	Quantitative measures of denitrification	
	2.5.2	<i>Approaches for measuring denitrification</i>	47
	2.5.3	Methods for measuring denitrification in the vadose zone	49

	2.5.4 zone or	Methods for measuring denitrification below the water table (saturated r groundwater)	51
	2.5.5	Implications for research	56
2.6	Subsur	face Denitrification Studies in New Zealand Environment	58
	2.6.1	Importance of denitrification studies in New Zealand	58
	2.0.2	Subsurface denitrification studies in New Zealand Knowledge gaps and research needs	
27	Conclu	ding Remarks	61
2.7 СНАР]	Conciu		01
DENIT MANA OXIDA IMPLIO	RIFICAT WATŪ I ATION-R CATION	FION POTENTIAL IN THE SUBSURFACE ENVIRONMENT IN THE RIVER CATCHMENT, NEW ZEALAND: INDICATIONS FROM EDUCTION CONDITIONS, HYDROGEOLOGICAL FACTORS, AND S FOR NUTRIENT MANAGEMENT) 64
Abstr	act		64
3.1	Introdu	letion	65
3.2	Method	ds and Materials	68
	3.2.1	Study area description	68
	3.2.2	Groundwater monitoring and quality trend	70
	3.2.3	Groundwater survey	71
	3.2.4 3.2.5	Groundwater sample collection and analytical methods	72
	3.2.6	<i>Classification of redox conditions and determination of denitrification</i>	
	potenti	al of groundwater	74
	3.2.7 factors	Assessment of effects of hydrochemical processes and hydrogeological on denitrification potential	76
3.3	Results	and Discussion	77
	3.3.1	Groundwater hydrochemistry and distribution of nitrate concentrations	and
	other r	edox-related parameters	77
	3.3.2	Denitrification characteristics of groundwater	82
	3.3.3 3.3.4	Anthropogenic and hydrogeological factors affecting hydrochemistry	04 nd
	denitrij	fication potential in groundwater	89
	3.3.5 Ioading	Implications of subsurface denitrification characteristics on nitrogen	96
3 /	Conclu	sions	90
3.4 СНАРІ		510115	97
A NOV	'EL ACE RATE QU	TYLENE INHIBITION INCUBATION TECHNIQUE FOR THE UANTIFICATION OF DENITRIFYING ENZYME ACTIVITY IN	
SUBSU	INFACE	SUILS	99
Abstr	act	·····	99
4.1	Introdu	iction	.100
4.2	Materia	als and Methods	.105
	4.2.1 4.2.2	Soil sample collection Denitrifying enzyme activity (DEA) measurements	.105 .108
		х	

	4.2.3	Analytical methods and quantification of DEA	113
4.3	Results	and Discussion	116
	4.3.1	Comparison of DEA measured with different incubation technique	<i>ues</i> 116
	4.3.2	<i>Effect of different substrate amounts on DEA measurements</i> .	
4.4	Conclus	sions	124
CHAPT	ER 5		126
QUANT	THE SIN	ION OF DENITRIFICATION RATE IN SHALLOW GROUND	WATER
Abataa		NGLE-WELL, FUSH-FULL TEST TECHNIQUE	120
Adstra			120
5.1	Introduc	ction	127
5.2	Method	s and Materials	131
	5.2.1	Study area and experimental site	
	5.2.2 5.2.3	The single well push-pull tests and analytical methods	133
	5.2.3	Quantification of denitrification rate	
5.3	Results	and Discussion	147
	5.3.1	Push-pull test results	
	5.3.2	Zero-order denitrification rates	
	5.3.3	First-order denitrification rates	163
	5.3.4	Comparison of denitrification rates obtained using denitrification	n reactant
	$(NO_3 - \Lambda$	<i>I)</i> and product (N_2O-N)	
	5.3.5	Comparison of denitrification rates obtained by zero-order and j	irst-order
5 1	Conclus	noaets	1/4
3.4 CULA DT		SIOIIS	
CHAPI	ER 6		181
CONTR	ASTING	G DENITRIFICATION CHARACTERISTICS IN THE VADOSE	ZONE
AND SE	ALLOV	V GROUNDWATER BENEATH TEMPERATE PASTURE LAT ATIONS FOR NITRATE MANAGEMENT IN AGRICULTURA	NDS AND
LANDS	CAPES.	ATIONS FOR NITRATE MANAGEMENT IN AORICOLTORA	
Abstra	et		181
6.1	Introdu	ction	182
6.2	Materia	Is and Methods	185
0.2	621	Study area and selection of study sites	185
	6.2.1 6.2.2	Installation of piezometers	
	6.2.3	Hydrogeologic characteristics of the vadose and saturated zones	of the
	study si	tes	
	6.2.4	Quantification of denitrification potential in the vadose zone by	neasuring
	denitrif	ying enzyme activity (DEA)	
	0.2.3 sinole-w	Quantification of dentification rate in the saturated zone by USI vell_push-pull test technique	ng ine 197
63	Regulto	and Discussion	201
0.5			204
	0.3.1	spatial and temporal variability of nitrate in the vadose zone	204

	6.3.2 zone	Spatial and temporal variability of denitrification potential in the va	udose 204
	6.3.3 ground	Spatial and temporal variability of denitrification characteristics in waters	<i>shallow</i> 210
	6.3.4	Indications from background concentrations of nitrous oxide in	
	ground	water at the study sites	221
	6.3.5	Implications of denitrification characteristics on transformation and	1 224
	transpo	rt of nitrate in the subsurface environment	
6.4	Conclu	sions	228
CHAP	TER 7		232
SYNTI	HESIS AN	ND RECOMMENDATIONS FOR FUTURE WORK	232
7.1	Introdu	ction	232
7.2	Occurre	ence of and potential for denitrification in the subsurface environment	t233
7.3	Ouantif	ving denitrification in the vadose and saturated zones	234
	7.3.1 subsurf 7.3.2	A novel technique for measuring denitrifying enzyme activity in the face soils Quantifying denitrification rate in shallow groundwater using the si why pull test technique	235 inge-
7.4	Variabi and the	lity in denitrification characteristics in the subsurface environment contributing factors	238
	7.4.1 7.4.2	Spatial and temporal variability Contributing factors	239 240
7.5	Implica freshwa	tions for land management to mitigate nitrate contamination of ter resources	242
7.6	Recom	nendations for future work	243
REFEF	RENCES .		246
APPEN	NDICES		274
Annen	dix A Su	nmary of Approaches for Measuring Denitrification	275
Append	dix B. Sur	nmary of In Situ Groundwater Denitrification Rate Measurement Tec	hniques
Append	dix C. Sur	nmary of denitrification studies in New Zealand	
Append	dix D. Sup	oplementary Results	293
Append	dix E. Cha	racteristics of the Study Sites	303
Append	dix F. Stat	ement of Contribution to Doctoral Thesis Containing Publications	307

LIST OF TABLES

Table 3.1 Threshold concentrations used for identifying redox process in groundwater
(modified from McMahon and Chapelle, 2008)75
Table 3.2 Summary statistics of groundwater quality parameters measured for
groundwater samples collected in the Tararua GWMZ during February-
March, 201479
Table 3.3 Loadings (rotated) from Principal Components Analysis of groundwater quality
data from wells in the Tararua GWMZ during February-March, 201485
Table 3.4 Redox sensitive parameters in groundwater with respect to different soil texture
and rock types in the Tararua GWMZ during February-March, 201492
Table 3.5 Estimated average N leaching and river loading rates in the Upper Manawatū
and Mangatainoka sub-catchments in the Tararua GWMZ
Table 4.1 Physical and chemical properties of soils collected at Massey Dairy No. 1 farm,
Palmerston North, New Zealand107
Table 4.2 Denitrifying enzyme activity (DEA) values ($\mu g N_2 O-N kg^{-1} dry soil day^{-1}$,
mean±stdev) for the Manawatū sandy loam soil (sampled in November 2014)
at the Massey No. 1 Dairy Farm, Palmerston North, New Zealand120
Table 4.3 Denitrifying enzyme activity (DEA) values ($\mu g N_2 O-N kg^{-1} dry soil day^{-1}$,
mean±stdev) for the Rangitikei silt loam soil (sampled in June 2013) at the
Massey No. 1 Dairy Farm, Palmerston North, New Zealand
Table 5.1 Parameters for the push-pull tests conducted at the two stusy sites in the
Manawatū catchment, New Zealand136
Table 5.2 Summary of different models for estimating zero-order (r) or first-order (k)
denitrification rate from single-well push-pull test data143
Table 5.3 Background characteristics of shallow groundwater measured during the
assessment of push-pull tests conducted at the two study sites in the
Manawatū catchment, New Zealand149
Table 5.4 Estimates of denitrification rate by different models based on zero-order and
first order-kinetics using denitrification reactant (nitrate-nitrogen) measured
during the push-pull tests conducted at the two study sites in the Manawatū
catchment, New Zealand160

Table 5.5 Estimates of denitrification rate by different models based on zero-order and
first order-kinetics using denitrification product (nitrous oxide-nitrogen)
measured during the push-pull tests conducted at the Palmerston North (PNR)
and Woodville (WDV) sites in the Manawatū catchment, New Zealand161
Table 5.6 Comparison of different models assuming zero-order or first-order kinetics for
the push-pull tests conducted at Massey No. 1 Dairy Farm, Palmerston North
(PNR site) and at a sheep and beef farm near Woodville (WDV site)178
Table 6.1 Characteristics of the study sites in the Manawatū River catchment
Table 6.2 Physical characteristics of piezometers used for push-pull tests conducted to
quantify the denitrification rate at four sites in the Manawatū River catchment,
New Zealand192
Table 6.3 Physical and chemical characteristics of the soil profile (vadose zone) of the
four study sites in the Manawatū River catchment193
Table 6.4 Shallow groundwater conditions, push-pull test parameters and measured
denitrification rates in Summer/Autumn season at the four sites in the
Manawatū River catchment, New Zealand199
Table 6.5 Shallow groundwater conditions, push-pull test parameters, and denitrification
rates measured in Winter/Spring at the four sites in the Manawatū River
catchment, New Zealand200
Table 6.6 Denitrifying enzyme activity (DEA) (mean \pm stdev) measured for different soil
depths at the four study sites in the Manawatū River catchment, New Zealand. 206

LIST OF FIGURES

Figure 2.1 The nitrogen cycle and its influence upon the water environment	13
Figure 2.2 Factors affecting denitrification in soils	19
Figure 3.1 (a) The Manawatū River catchment and the Tararua GWMZ and its	
subcatchments and, (b) distribution of groundwater types based on	
groundwater survey in the Tararua GWMZ during February-March, 2014	69
Figure 3.2 Distribution of (a) nitrate-N (mg L^{-1}), (b) dissolved oxygen (mg L^{-1}), (c)	
dissolved organic carbon (mg L^{-1}) and (d) ferrous iron (mg L^{-1}), in the Tararua	
GWMZ during February-March, 2014.	80
Figure 3.3 Distribution of (a) ambient redox processes, and (b) wells with high	
denitrification potential in groundwater in the Tararua GWMZ during	
February-March, 2014	83
Figure 3.4 Estimated spatial distribution of contours with iso-factor scores for PCA	
Component 2 (redox processes in reducing conditions) for groundwater in the	
Tararua GWMZ based on 56 samples collected in February-March, 2014	88
Figure 3.5 Scatter plot of PCA Components 1 and 2 (redox processes in reducing	
conditions), with respect to identified redox status for groundwater in the	
Tararua GWMZ based on 56 samples collected in February-March, 2014.	
Labels in the plot are well numbers	89
Figure 3.6 Scatter plot of PCA Components 1 and 2 (redox processes in reducing	
conditions), with respect to (a) land use, (b) soil texture, (c) soil drainage	
class, and (d) top rock types for groundwater in the Tararua GWMZ based on	
56 samples collected in February-March, 2014. Labels in the plot are well	
numbers	91
Figure 3.7 (a) DO and (b) nitrate-N concentrations in groundwater under different	
combinations of rock type+drainage class in the Tararua GWMZ during	
February-March, 2014. The absence of box plot for some combinations	
indicates that no sample fell into such category. Rock types: Al – alluvium, Gr	
– gravel, Lo – loess.	95
Figure 3.8 (a) Nitrate-N and (b) dissolved organic carbon (DOC) concentrations in	
groundwater under different combinations of land use+rock type+drainage	
class in the Tararua GWMZ during February-March, 2014. The absence of	

	xvi	
	New Zealand (WDV site)	155
	February 2015 and August 2015 at a sheep and beef farm near Woodville,	
-	dilution-corrected nitrate-N concentrations for the push-pull tests conducted in	
Figure 5.7 I	Estimating zero-order denitrification rate based on linear regression of	
	Palmerston North, New Zealand (PNR site)1	155
	October 2013, May 2014, and July 2014 at the Massey No. 1 Dairy Farm,	
	dilution-corrected nitrate-N concentrations for the push-pull tests conducted in	
Figure 5.6 I	Estimating zero-order denitrification rate based on linear regression of	
	volume of test solution for both tests was 100 L	153
	Error bars represent standard deviations of the sampling replicates. The	
;	acetylene) at the Massey No. 1 Dairy Farm, Palmerston North, New Zealand.	
1	tests conducted in May 2014 (with acetylene) and July 2014 (without	
Figure 5.5 l	Nitrous oxide concentrations (uncorrected for dilution) during the push-pull	
	No. 1 Dairy Farm, Palmerston North, New Zealand (PNR site)	152
	collected during the push-pull test conducted in the May 2014 at the Massey	
Figure 5.4 0	Concentrations of different forms of nitrogen in groundwater samples	
;	solution 100 L	151
:	represent standard deviations of the sampling replicates. Volume of test	
;	sheep and beef farm near Woodville, New Zealand (WDV site). Error bars	
	the push-pull test conducted in (a) February 2015 and (b) August 2015 at a	
Figure 5.3 (Concentrations of (1) nitrate-N and bromide, and (2) nitrous oxide-N during	
	2014)	150
	Volume of test solution - 40 L (Oct 2013) and 100 L (May 2014 and July	
:	site). Error bars represent standard deviations of the sampling replicates.	
	2014 at the Massey No. 1 Dairy Farm, Palmerston North, New Zealand (PNR	
-	the push-pull test conducted in (a) October 2013, (b) May 2014, and (c) July	
Figure 5.2 (Concentrations of (1) nitrate-N and bromide, and (2) nitrous oxide-N during	
;	sheep and beef farm near Woodvile (WDV site)1	132
	Massey University's No. 1 Dairy Farm in Palmerston North (PNR site), (2)	
Figure 5.1	The Manawatū River catchment showing the location of the study sites: (1)	
;	activity (DEA): (a) Erlenmeyer flask, and (b) Vacuum pouches1	108
Figure 4.1 I	Laboratory incubation techniques used to measure denitrification enzyme	
	category. Rock types: Al – alluvium, Gr – gravel, Lo – loess	.95
1	box plot for some combinations indicates that no sample fell into such	

Figure 5.8 Estimating zero-order denitrification rate from a curve fitted on the dilutioncorrected nitrate-N concentrations (Trudell et al., 1986) during the push-pull test conducted in October 2013, May 2014, and July 2014 at the Massey No. 1 Figure 5.9 Estimating zero-order denitrification rate from a curve fitted on the dilutioncorrected nitrate-N concentrations (Trudell et al., 1986) during the push-pull test conducted in February 2015 and August 2015 at a sheep and beef farm near Woodville, New Zealand (WDV site).....156 Figure 5.10 Estimating zero-order denitrification rate based on Snodgrass and Kitanidis (1998) for the push-pull tests conducted in October 2013, May 2014, and July 2014 at the Massey No. 1 Dairy Farm, Palmerston North, New Zealand (PNR site)......157 Figure 5.11 Estimating zero-order denitrification rate based on Snodgrass and Kitanidis (1998) for the push-pull tests conducted in February and August 2015 at a sheep and beef farm near Woodville, New Zealand (WDV site).157 Figure 5.12 Estimating zero-order denitrification rate from a curve fitted on the dilutioncorrected nitrous oxide-N concentrations (Sanchez-Perez et al., 2003) for the push-pull tests conducted in (a) October 2013 and (b) May 2014 at the Massey No. 1 Dairy Farm, Palmerston North, New Zealand (PNR site).158 Figure 5.13 Estimating zero-order denitrification rate from a curve fitted on the dilutioncorrected nitrous oxide-N concentrations (Sanchez-Perez et al., 2003) for the push-pull tests conducted in (a) February 2015 and (b) August 2015 at a sheep Figure 5.14 Estimating first-order denitrification rate based on Haggerty et al. (1998) using the nitrate-N concentrations measured during the push-pull tests conducted in (a) October 2013, (b) May 2014, and (c) July 2014 at the Massey No. 1 Dairy Farm, Palmerston North, New Zealand (PNR site). The data points shown are average values of triplicates......166 Figure 5.15 Estimating first-order denitrification rate based on Haggerty et al. (1998) using the nitrate-N concentrations measured during the push-pull tests conducted in (a) February 2015 and (b) August 2015 at a sheep and beef farm near Woodville, New Zealand (WDV site). The data points shown are average

- Figure 5.17 Estimating first-order denitrification rate based on Snodgrass and Kitanidis (1998) for the push-pull tests conducted in (a) February 2015, and (b) August 2015 at a sheep and beef farm near Woodville, New Zealand (WDV site)......169

- Figure 6.2 Trend in average NO₃-N and Br concentrations (excluding background concentrations) measured during the push-pull tests conducted at the Pahiatua (PAH) site in the Manawatū River catchment in (1) the Summer/Autumn 2015 and (2) the Winter/Spring 2015. The time elapsed (hr) was measured from the end of test solution injection. Error bars show the standard deviation for three replicates.

Figure 6.5 Trend in average NO ₃ -N and Br concentrations (excluding background		
	concentrations) measured during the push-pull tests conducted at the	
	Palmerston North (PNR) site in the Manawatū River catchment in (1)	
	Summer/Autumn 2014 and (2) the Winter/Spring 2013. The time elapsed (hr)	
	was measured from the end of test solution injection. Error bars show the	
	standard deviation for three replicates2	16
Figure 6.6	Trend in average nitrous oxide (N ₂ O-N) concentrations measured during the	
	push-pull tests conducted at the four study sites in the Manawatū River	
	catchment in (1) the Summer/Autumn and (2) Winter/Spring seasons. The	
	time elapsed (hr) was measured from the end of test solution injection. Error	

LIST OF ABBREVIATIONS AND SYMBOLS

Ag	silver
AĪ	acetylene inhibition
Al	alluvium
amsl	above mean sea level
ANOVA	Analysis of Variance
APHA	American Public Health Association
BD	bulk density
bgl	below ground level
Br	bromide
С	carbon
Ca ²⁺	calcium
CBE	charge balance error
Cl	chloride
CO ₂	carbon dioxide
C_2H_2	acetylene
DAN	Dannevirke
DEA	denitrifying enzyme activity
DEM	digital elevation model
DIC	dissolved inorganic carbon
DNRA	dissimilatory nitrate reduction to ammonium
DO	dissolved oxygen
DOC	dissolved organic carbon
Eh	redox potential
EU	European Union
FeS ₂	nvrite
Fe^{2+}	ferrous iron
FSL	Fundamental Soil Laver
σ	gram
GC	gas chromatograph
Gr	gravel
GWMZ	Groundwater Management Zone
h	hour
ha	hectare
HCO_2^-	bicarbonate
HWC	hot water-extractable carbon
H ₂ O	water
$H_2 SO_4$	sulphuric acid
ICP-OES	Inductively coupled plasma optical emission spectrometry
K ⁺	potassium
KBr	potassium bromide
ko	kilogram
kI	kilojoule
km	kilometre
km ²	square kilometre
KNO ₂	notassium nitrate
K ₂ Cr ₂ O ₇	notassium dichromate
I	litra

Lo	loess
LSD	Least Significant Difference
m	metre
Μ	million
MAV	maximum allowable value
mg	milligram
$mg L^{-1}$	milligram per litre
Mg^{2+}	magnesium
mĽ	millilitre
mm	millimetre
Mn^{2+}	manganese
mol	mole
MRT	Mean Residence Time
mV	millivolts
m ³	cubic metre
N	nitrogen
Na ⁺	sodium
NH ⁺	ammonium
NII4 NO	nitrio ovido
NO. ⁻	nitrite
NO_2	nitrate
NO3 NDSEM	Notional Daliay Statement for Freshwater Management
NFSFM N	national Policy Statement for Freshwater Management
IN ₂	nitrogen gas
N ₂ O	
	organic carbon
ORP	oxidation-reduction potential
O_2	oxygen
P	pnospnorus
PAH	Pahiatua
PCA	Principal Components Analysis
PE	polyethylene
PNR	Palmerston North
ppb	parts per billion
ppm	parts per million
PVC	polyvinyl chloride
rpm	revolution per minute
\mathbb{R}^2	coefficient of determination
$SO_4^{2^2}$	sulphate
SPC	specific conductance
UK	United Kingdom
WDV	Woodville
WFPS	water-filled pore space
yr	year
°C	degree Celcius
μg	microgram
μL	microlitre
μm	micrometre