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Abstract 

Mozzarella cheese is a pasta filata type of cheese. Its manufacture includes a kneading – 

stretching step that creates a fibrous protein network and distributes fat-serum channels 

to attain desirable melt functionality on a pizza. During processing and manufacturing 

of pasta-filata cheese, large deformations take place. For appropriate characterization of 

a food material, rheological evaluation should be conducted in similar operating 

conditions, length scales and time scales to those taking place in the actual process. 

Development of the typical fibrous pasta-filata structure of mozzarella cheese depends 

on composition and process variables. Critical process variables in the development of 

cheese structure are time, temperature and shear. In this study we studied the effect of 

shear work on rheology, structure and melt functionality of model Mozzarella cheese.  

Three types of model cheeses (full-fat, non-fat and full-fat with added tri-sodium 

citrate) were prepared by working cheese components together at 70 oC in a twin screw 

Blentech cooker. Varied amounts of shear work input (2.8-185 kJ/kg) were given to the 

cheese samples using 50, 150 and 250 rpm screw speeds. Samples were subjected to a 

range of rheological tests, confocal laser scanning microscopy, fat particle size 

measurements (DLS) and melt functionality evaluation.     

While measuring steady shear viscosity of Mozzarella-type cheeses in a rotational 

rheometer at 70oC, three main difficulties were encountered; wall slip, structural failure 

during measurement and viscoelastic time dependent effects. A flow curve method was 

successfully devised to measure steady shear rheology by using serrated plates as 

surface modification to avoid wall slip, giving enough measurement duration at low 

shear rate to avoid viscoelastic effects and selecting limited shear steps to cause 

minimum structural changes. These techniques enabled successful measurement of 

steady shear viscosity of molten Mozzarella-type cheeses at 70oC at shear rates up to 

250 s-1. 

Strong work thickening was observed for full fat Mozzarella cheese from steady shear 

rheology, oscillatory rheology, creep, elongational viscosity and tensile testing data. 

Steady shear rheology and melt functionality were found to be strongly dependent on 

total shear work input. An exponential increase in consistency coefficient (K from 

power law model) was observed with increasing amounts of accumulated shear work, 

indicating work thickening behaviour. An exponential work thickening equation is 
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proposed to describe this behaviour. Excessively worked cheese samples exhibited 

liquid exudation, poor melting and poor stretch. Nonfat cheese exhibited similar but 

smaller changes after excessive shear work input.  

At lower shear work inputs (<30 kJ/kg), cheese behaved like a viscoelastic liquid 

exhibiting typical entangled polymer melt behaviour with moderate frequency 

dependence and at excessive shear work levels (>70 kJ/kg) it behaved like a viscoelastic 

solid with low frequency dependence. A definite critical point for structural and 

viscoelastic transition was identified at a medium shear work level (~ 58 kJ/kg at 150 

rpm). Similar viscoelastic property changes occurred in non-fat cheese suggesting that 

major changes were taking place in the protein matrix during working.  

Confocal microstructures plus macroscopic observations showed systematic changes in 

structure with increased shear work inputs with unmixed buttery liquid observed at <5 

kJ/kg, typical Mozzarella type microstructures (elongated fat-serum channels) at 6-15 

kJ/kg and homogeneously distributed, small size fat droplets at >58 kJ/kg. At very high 

shear work inputs, > 75 kJ/kg, striations or anisotropy in the microstructures had 

disappeared and small micro-cracks were evident. Volume-weighted mean fat particle 

size decreased with shear work input and particle size distributions also changed. To 

account for the short and long term relaxation response behaviour, a 4-element Burger’s 

model was found adequate for fitting the creep data of model cheese at 70 oC but a 6-

element model was required at 20 oC. As shear work input increased, retarded 

compliance decreased and zero shear viscosity increased indicating the more elastic 

behavior of the cheeses with higher shear work input.  

Fracture stress and strain for longitudinal samples from elongated full fat cheese did not 

vary significantly with shear work input up to 26.3 kJ/kg then decreased dramatically at 

58.2 kJ/kg. Longitudinal samples with shear work input <30 kJ/kg, demonstrated 

significant strain hardening. At shear work inputs <30 kJ/kg strong anisotropy was 

observed in both fracture stress and strain. After a shear work input of 58.2 kJ/kg 

anisotropy and strain hardening were absent. Perpendicular samples did not show strain 

hardening at any level of shear work input.  

A good correlation was found between the steady shear, oscillatory shear and transient 

rheological properties and the melting properties of the cheeses. The order for the 

rheological properties in terms of their sensitivity towards both shear work input and 
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melt functionality is app > G’ > elongational viscosity > consistency coefficient, K. It 

was concluded that the dominant contributor to the changes in rheology, structure and 

melt properties with increased shear work was shear induced structural changes to the 

protein matrix. An increase in calcium induced protein-protein interactions after high 

shear work at 70 oC. 

In summary, this thesis provides useful insights to shear work induced changes in 

material properties. It proposes useful linkages between the manufacturing process and 

the application of model Mozzarella cheese using appropriate rheological methods. 

Since the linkages were validated for only one composition and in only one processing 

environment, it is proposed that they should be tested in other conditions. In order to 

build a more complete picture, a molecular level study is proposed for future work to 

elucidate chemical changes during working and find appropriate linkages with physical 

and functional characteristics.  
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