1,120 research outputs found

    Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

    Get PDF
    We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 M⊙\text{M}_{\odot} and mass ratios between 1/61/6 and 1 \,. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological scales.Comment: 9 pages, 4 figures, corrected the name of one author (previously misspelled

    Enhancing the significance of gravitational wave bursts through signal classification

    Get PDF
    The quest to observe gravitational waves challenges our ability to discriminate signals from detector noise. This issue is especially relevant for transient gravitational waves searches with a robust eyes wide open approach, the so called all- sky burst searches. Here we show how signal classification methods inspired by broad astrophysical characteristics can be implemented in all-sky burst searches preserving their generality. In our case study, we apply a multivariate analyses based on artificial neural networks to classify waves emitted in compact binary coalescences. We enhance by orders of magnitude the significance of signals belonging to this broad astrophysical class against the noise background. Alternatively, at a given level of mis-classification of noise events, we can detect about 1/4 more of the total signal population. We also show that a more general strategy of signal classification can actually be performed, by testing the ability of artificial neural networks in discriminating different signal classes. The possible impact on future observations by the LIGO-Virgo network of detectors is discussed by analysing recoloured noise from previous LIGO-Virgo data with coherent WaveBurst, one of the flagship pipelines dedicated to all-sky searches for transient gravitational waves

    Timing with resonant gravitational wave detectors: An experimental test

    Get PDF
    We measure the time of arrival t0{t}_{0} of a force signal acting on a room temperature gravitational wave antenna. The antenna has a noise spectral density whose shape is a rescaled replica of that predicted for the two subkelvin antennas located in Italy, once at their sensitivity goal. t0{t}_{0} is expressed as {t}_{0}{=t}_{\ensuremath{\varphi}}{+kT}_{0} where T0{T}_{0} is half the natural period of oscillation of the antenna, |{t}_{\ensuremath{\varphi}}|l~{T}_{0}/2, and kk is an integer. We measure the phase part {t}_{\ensuremath{\varphi}} with an accuracy of {\ensuremath{\sigma}}_{{t}_{\ensuremath{\varphi}}}\ensuremath{\approx}174\mathrm{\ensuremath{\mu}}\mathrm{s}/\mathrm{S}\mathrm{N}\mathrm{R}, where SNR is the signal to noise ratio for the signal amplitude. We also find that, for SNRg 20,\mathrm{SNR}g~20, the error on kk is \ensuremath{\delta}k\ensuremath{\ll}1 so that the total statistical error on the arrival time reduces to the phase error {\ensuremath{\sigma}}_{{t}_{\ensuremath{\varphi}}}. We discuss how this last result can be achieved even for smaller values of the SNR, by better tuning the modes of the antenna. We finally discuss the relevance of these results for source location and spuria events rejection with the two subkelvin detectors above

    A selective ratiometric fluorescent probe for no‐wash detection of PVC microplastic

    Get PDF
    Microplastics (MP) are micrometric plastic particles present in drinking water, food and the environment that constitute an emerging pollutant and pose a menace to human health. Novel methods for the fast detection of these new contaminants are needed. Fluorescence‐based detection exploits the use of specific probes to label the MP particles. This method can be environmentally friendly, low‐cost, easily scalable but also very sensitive and specific. Here, we present the synthesis and application of a new probe based on perylene‐diimide (PDI), which can be prepared in a few minutes by a one‐pot reaction using a conventional microwave oven and can be used for the direct detection of MP in water without any further treatment of the sample. The green fluorescence is strongly quenched in water at neutral pH because of the formation dimers. The ability of the probe to label MP was tested for polyvinyl chloride (PVC), polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), poly methyl methacrylate (PMMA) and polytetrafluoroethylene (PTFE). The probe showed considerable selectivity to PVC MP, which presented an intense red emission after staining. Interestingly, the fluorescence of the MP after labeling could be detected, under excitation with a blue diode, with a conventional CMOS color camera. Good selectivity was achieved analyzing the red to green fluorescence intensity ratio. UV– Vis absorption, steady‐state and time‐resolved fluorescence spectroscopy, fluorescence anisotropy, fluorescence wide‐field and confocal laser scanning microscopy allowed elucidating the mechanism of the staining in detail

    Correlation between Gamma-Ray bursts and Gravitational Waves

    Get PDF
    The cosmological origin of Îł\gamma-ray bursts (GRBs) is now commonly accepted and, according to several models for the central engine, GRB sources should also emit at the same time gravitational waves bursts (GWBs). We have performed two correlation searches between the data of the resonant gravitational wave detector AURIGA and GRB arrival times collected in the BATSE 4B catalog. No correlation was found and an upper limit \bbox{hRMS≀1.5×10−18h_{\text{RMS}} \leq 1.5 \times 10^{-18}} on the averaged amplitude of gravitational waves associated with Îł\gamma-ray bursts has been set for the first time.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations

    Full text link
    We present new interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point zz if either the scaled Lx,tp,qL^{p,q}_{x,t}-norm of the velocity with 3/p+2/q≀23/p+2/q\leq 2, 1≀q≀∞1\leq q\leq \infty, or the Lx,tp,qL^{p,q}_{x,t}-norm of the vorticity with 3/p+2/q≀33/p+2/q\leq 3, 1≀q<∞1 \leq q < \infty, or the Lx,tp,qL^{p,q}_{x,t}-norm of the gradient of the vorticity with 3/p+2/q≀43/p+2/q\leq 4, 1≀q1 \leq q, 1≀p1 \leq p, is sufficiently small near zz

    Cultivation area affects the presence of fungal communities and secondary metabolites in Italian durum wheat grains

    Get PDF
    In this study, durum wheat kernels harvested in three climatically different Italian cultivation areas (Emilia Romagna, Umbria and Sardinia) in 2015, were analyzed with a combination of different isolation methods to determine their fungal communities, with a focus on Fusarium head blight (FHB) complex composition, and to detect fungal secondary metabolites in the grains. The genus Alternaria was the main component of durum wheat mycobiota in all investigated regions, with the Central Italian cultivation area showing the highest incidence of this fungal genus and of its secondary metabolites. Fusarium was the second most prevalent genus of the fungal community in all cultivation environments, even if regional differences in species composition were detected. In particular, Northern areas showed the highest Fusarium incidence, followed by Central and then Southern cultivation areas. Focusing on the FHB complex, a predominance of Fusarium poae, in particular in Northern and Central cultivation areas, was found. Fusarium graminearum, in the analyzed year, was mainly detected in Emilia Romagna. Because of the highest Fusarium incidence, durum wheat harvested in the Northern cultivation area showed the highest presence of Fusarium secondary metabolites. These results show that durum wheat cultivated in Northern Italy may be subject to a higher FHB infection risk and to Fusarium mycotoxins accumulation

    ON-LINE CONSISTENCY TESTS FOR BAR DETECTORS

    Get PDF
    In order to detect gravitational wave signals with resonant bar detectors using Wiener–Kolmogorov (WK) filters, both a model for the power spectrum density (PSD) of the noise and a signal template should be provided. As the analysis is not meant to handle non-gaussian data, we have to discriminate (and constrain to) time periods where the noise follows a quasi-stationary gaussian model. Within these periods, candidate events are selected in the WK filter output, and their fundamental parameters (time of arrival and amplitude) are computed. A necessary and sufficient condition for the reliability of such estimates is the consistency of the signal shape with the template. This is done performing a goodness-of-the-fit test

    Search for binary black hole mergers in the third observing run of Advanced LIGO-Virgo using coherent WaveBurst enhanced with machine learning

    Get PDF
    In this work, we use the coherent WaveBurst (cWB) pipeline enhanced with machine learning (ML) to search for binary black hole (BBH) mergers in the Advanced LIGO-Virgo strain data from the third observing run. We detect, with equivalent or higher significance, all gravitational-wave (GW) events previously reported by the standard cWB search for BBH mergers in the third GW Transient Catalog. The ML-enhanced cWB search identifies five additional GW candidate events from the catalog that were previously missed by the standard cWB search. Moreover, we identify three marginal candidate events not listed in third GW Transient Catalog. For simulated events distributed uniformly in a fiducial volume, we improve the sensitive hypervolume with respect to the standard cWB search by approximately 28% and 34% for the stellar-mass and intermediate mass black hole binary mergers respectively, detected with a false-alarm rate less than 1/100 yr-1. We show the robustness of the ML-enhanced search for detection of generic BBH signals by reporting increased sensitivity to the spin-precessing and eccentric BBH events as compared to the standard cWB search. Furthermore, we compare the improvement of the ML-enhanced cWB search for different detector networks
    • 

    corecore