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Abstract  
 We measure the time of arrival to of a force signal acting on a room temperature 
gravitational wave detector. The detector has a noise spectral density whose shape is a 
rescaled replica of that predicted for the two subkelvin detectors located in Italy, once at 
their sensitivity goal. to is expressed as o ot t kTφ= +  where To is half the natural period of 

oscillation of the detector, |tφ| ���o/2, and k is an integer. We measure the phase part tφ with 

an accuracy of 174t s SNR
φ

σ µ≈ , where SNR is the signal to noise ratio for the signal 

amplitude. We also find that for SNR �� ���� �	
� 
����� �� �� ��� δk << 1 so that the total 
statistical error on the arrival time reduces to the phase error 

tφ
σ . We discuss how this last 

result can be achieved even for smaller values of SNR, by better tuning the modes of the 
detector. We finally discuss the relevance of these results for source location and spuria 
events rejection with the two subkelvin detectors above. 
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1. Introduction 
 Two subkelvin ( 50T mK≈ ), resonant ( 1 KHz≈ ) gravitational wave detectors 

aimed at a burst sensitivity of 20
min 3 10h −≅ ×  and a post-detection bandwidth of 50 Hz≈ 1, 

have been built in Italy2 and they are going to operate in coincidence in the near future.  
 The experiment’s target is to detect bursts from supernovae explosions or from 
coalescence of binary neutron star systems. For this kind of signals the relatively large 
bandwidth will open the possibility3 of accurate timing.  
 Timing information can be used both to locate the source2, or at least some of its 
coordinates, and to veto candidate events that are not compatible with light’s speed 
propagation4,5. 
 In order to demonstrate the practical feasibility of absolute timing with resonant 
detectors, we have performed an experiment with a room temperature detector connected to 
our standard data analysis system6. The detector is excited by a force pulse generated by a 
capacitive actuator and the time of arrival of the pulse is measured by looking at the 
maximum of the output of the Wiener filter.  
 The detector has a relatively poor sensitivity as compared to cryogenic ones, but its 
resonant frequencies and its post detection bandwidth happen to be close to those expected 
for the subkelvin detectors at their sensitivity goal. As the timing accuracy depends only on 
these parameters, the results obtained with the present room temperature detector can be 
scaled directly to the subkelvin ones. 
 The plan of the paper is as follows: in Sect. 2 we briefly describe the properties of 
signals and noise in g.w. resonant detectors and then, by means of the maximum likelihood 
approach, we give theoretical predictions for the uncertainties in the estimate of the signal 
amplitude and time of arrival for a gravitational wave detector. Sect. 3 and 4 are devoted to 
the description of the experimental apparatus and to the experimental results respectively. 
Finally in Sect. 5 we discuss the relevance of our results for the existing cryogenic 
detectors. 

 

2. The estimate of the time of arrival 
 The estimate of the arrival time of a signal in the presence of gaussian noise is a 
well-established problem in signal analysis7, 8. In this section we summarize some results 
that are relevant for the discussion of a timing experiment with resonant detectors.  
 The data consist of a series of samples: 

( )     ( -N     )o ox A f t t Nα α αε α= + − ≤ ≤              (1) 

where εα is the αth sample of a gaussian, time invariant, zero-mean stochastic process and 

f(t-to) is a signal of unit amplitude arriving at time to. Ao is the “true” signal amplitude that 
has to be estimated together with to. 
 In order to give an estimate for Ao and to, the method of maximum likelihood9 
searches for the minimum of the log-likelihhood function: 

( ) ( ) ( )
,

,
N

N

A t x Af t t x Af t tαβ α α β β
α β

µ
=−

 Λ = − − × − −    ∑        (2) 
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as a function of A and t. In eq. 2 the matrix µαβ is the inverse of the cross correlation 

matrix εαεβ = µαβ
−1  where the brackets  indicate the mean value. 

 For any given t the minimum of Λ(A,t) is readly found at 

( )
( )

( ) ( )
,

,

ˆ

N

N

N

N

x f t t

A t
f t t f t t

αβ α β
α β

αβ α β
α β

µ

µ

=−

=−

−
=

− −

∑

∑

      (3) 

with an error  

( )
( ) ( )

2
ˆ

,

1
NA
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f t t f t tαβ α β

α β

σ
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=−

=
− −∑

     (4) 

We assume from now on that, as usally happens in practice, the data span a long enough 
time interval so that the error in eq. (4) is in practice independent of t: ( ) ( )2 2 2

ˆ ˆ o AA A
t tσ σ σ= = .  

 Eqs. (3) and (4) are fully equivalent to the results of the Wiener filter method and 
ˆ A t( ) can then be considered as the output of this filter as well. 

 The minimum of Λ(A,t), at ( )ˆA A t= , is given by: 

( ) ( )2

2
,

ˆN

N A

A t
t x xαβ α β

α β
µ

σ=−

Λ = −∑       (5) 

 Eq. (5) shows that the best estimate for the arrival time t, is the value that maximize 

the signal to noise ratio ( ) ( )ˆ

A

A t
SNR t

σ
= . 

By substituting eq. (1) in eq. (3), and by shifting the time axis until to=0, one gets that 

ˆ A t( ) can be written as ˆ A t( ) = A oR t( )+ A r t( ) , where R(t) is given by  

( )
( ) ( )

( ) ( )
,

,

N

i k N
N

i k N

f t t f t

R t
f t f t

αβ α β

αβ α β

µ

µ

=−

=−

−
=

∑

∑
      (6) 

Ar(t) is a zero mean random process that in the limit where N∅ becomes also time invariant 

with autocorrelation ( ) ( ) ( )2
r r AA t A t Rτ σ τ+ = × .  

 Up to linear terms in the inverse of the “true” signal to noise ratio o o ASNR A σ= , 

SNR2 can then be expanded as ( ) ( ) ( ) ( ){ }2 2 2 2o r oSNR t SNR R t R t A t A≈ × +    . 

 For resonant detectors R(t) is the superposition of few exponentially damped 
oscillating functions with closeby frequencies (Fig. 1). As a consequence R(t) shows a 
series of maxima and minima approximately spaced by To/2, where 1/To is the natural 
frequency of the detector. The first of these extrema is always located at t=0.  
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 For high enough values of SNRo, at each maximum of R2(t) corresponds a 

maximum of SNR2(t). Due to fluctuations, however, the two maxima are not located at the 
same time value. In the vicinity of the αth maximum of R2(t), attained at time t=tk, SNR2(t) 
can be expanded in powers of tφ=t-tk and has a maximum, as a function of tφ, at: 

( )
( )

r k
k

o k

A t
t

A R tφ = −
�
��       (7) 

where ( )r kA t�  stands for the time derivative of the random process A r t( )  evaluated at t=tk, 

and ( )kR t��  is the second time derivative of R(t) at same time. From standard theory of 
random variables and processes one gets that: 

( )
( ) 0r k

k
o k

d A t dt
t

A R tφ = − =��      (8a) 

( )
( ) ( )

( )
( )
( )
0

0
r k r k

r k k
o k o k

A t A t R
A t t

A R t A R tφ = − = =
� �
�� ��    (8b) 
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r k r k A o
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A t A t R T
t

A R t A R t SNR R t
φ

σ
π

= = − ≈
� � ��
�� ��   (8c) 

 Eqs. (8a) and (8b) state that, within the present approximation, tφk is a zero mean, 

gaussian variable independent of ( )r kA t .  
 Eq. (8c), where the final approximate term has been obtained by using 

( ) ( ) ( )2
2k o kR t T R tπ≈��  and R(0)=1, shows that the width 2

kt kt
φ φσ =  of the gaussian 

distribution of tφk is much smaller than the spacing To/2 between two adjoining maxima 

and is: 

2k

o
t

k

T

SNRφ
σ

π
=

⋅
      (9) 

with SNRk=R(tk)SNRo the signal to noise ratio on the κth maximum. Eq. (9) is the 

classical formula9 for the “phase” timing of narrowband signals. With this we mean that if 

the above timing error is converted to a phase error 
2

t
oT φφ
πσ σ= , this amounts to 

σφk=1/SNRk. 

 Up to this point then, the maximum likelihood criterium gives a discrete series of 
possible arrival time values tκ+tφk, spaced roughly by To/2. For each of this possible arrival 

times, the estimate of the amplitude ( )ˆ
kA t  is a gaussian random variable with mean value 

AoR(tk) and standard deviation σA . In order to get a well defined arrival time one has then 

to pick up the the value t* at which | ( )ˆ
kA t | attains its maximum.  

 As already stated, for resonant detectors R(t) can be written as 

( ) ( ) ( ) ( )cos ( )sino oR t a t t b t tω ω= + , with ωo some center “carrier” angular frequency not 
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more than a few percent far from the detector resonant angular frequency 2π/To. a(t) and 
b(t) are two slowly varying function of time that consist of a combination of exponentials 
and beating notes among the various modes of the detector-transducer-amplifier chain. As a 
consequence R(tk), that attains his maximum at tk=0 (that we assume to correspond to k=0) 
and that is an even function of k, can be expanded, for the first few values of k, as: 

 ( ) ( ) ( )2 2
*1 1 2

k

k k kR t t tτ ω≈ − ⋅ − −     (10) 

with τ and ω* two constants that obey to 1/τ, ω*<<ωo. 

 In addition, as for large signal to noise ratios and for α not too large Ar(tk)� 

Ao|R(tk)|, then ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )*ˆ 1
k

k o k r k o k r k o k r kA t A R t A t A R t A t A R t A t= + ≈ + − ≡ + . It 

is easy to calculate that the series ( )*
r kA t  has autocorrelation 

( ) ( ) ( )* * 2
r k r m A k mA t A t R t tσ= − .  

 

 The series ( )ˆ
kA t  can then be considered as made of the samples of the “signal” 

Ao|R(tk)| buried into the gaussian zero mean noise ( )*
r kA t  and all the machinery we have 

applied then to extract tφ can in principle be applied again to evaluate t*.  

 If this is made, it is straightforward to calculate that the analogous of the function 

R(t) in eq. (6) becomes ( ) ( )* 2 2
*1 2R t t tτ ω≈ − − and two limiting case are given where 

quite different results are obtained.  

 If for all values of k in eq. (10) |tk|/τ is neglegible in comparison to 2 2
* 2ktω , i.e. if 

2
* 4 1oTω τ � , then ( )* 2 2

*1 2R t tω= −  has a well defined second derivative at t=0 and one 

gets that: 

*

*

1
t

oSNR
σ

ω
=

⋅
      (11) 

In the opposite limit where 2
* 4 1oTω τ � instead, the signal 1-|t|/τ has an infinite second 

derivative at the origin and the linear expansion used to get eq. (7) or eq. (11) cannot be 

used anymore. To estimate σtβ
in this case one can use the following argument: ( )ˆ

kA t  is 

approximately a Markov series. Then ( ) ( ) ( )ˆ ˆ 0 1 2k k A kA t A t tτ ε σ τ= ⋅ − + ⋅ ⋅  where ε 

is a zero mean gaussian variable with unit variance independent of ( )ˆ 0A . The probability 

then that ( )ˆ
kA t �� ( )ˆ 0A  is the same as the probability that 2o kSNR tε τ≥ . The 

probability that ( )ˆ
kA t �� ( )ˆ 0A  and/or ( )ˆ

kA t− �� ( )ˆ 0A  is approximately twice as much 

i.e. the same as the probability that 2o kSNR tε τ≥ . In summary this crude reasoning 

brings to the result that t* is approximately χ2 distributed with one degree of freedom, with 
standard deviation  
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* 2
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oSNR

τσ =        (12) 

a result that can be found, based on a more rigorous ground, in ref. 8. 
 As already stated the times tk are, within a few percent, spaced by To/2, i.e. 
tk=kTo/2. The random variable k has then a standard deviation 
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and when σk<<1 the timing error reduces to the phase contribution only in eq. (9). 
 In summary the time of arrival t is expected to be a zero mean random variable with 
an approximate distribution made of a series of gaussian peaks with gaussian distributed 
relative amplitudes: 

( )
( ) ( ){ }2 2/ 2

2

2

o m kSNR t mT m

o m

m k

SNR
F t e

ω σ
ω

πσ

− +  ∞ −

=−∞

≈ ∑    (14) 

where the approximation10 has better accuracy toward low absolute values of k. 

 

3. Experimental Apparatus and Measurement Methods 
 To experimentally test the above ideas, we have used a room temperature replica of 

the subkelvin AURIGA detector. The sensitive part of the apparatus is a 2.3 tons cylinder, 
made of 5056 aluminium alloy, suspended to a single copper wire (see Fig. 2). The 
fundamental mode of the detector is at �� �������� ���������
� ����
� ��������� ���
������
provides, at this frequency, an attenuation of about 150 dB , which is enough to suppress 
the environmental noise below the thermal vibrations of the fundamental mode of the bar. 
The read out consists of an electromechanical capacitive, high mass transducer2 and a very 
low noise FET preamplifier11.  

Briefly the transducer consists of an aluminium disk rigidly connected to one of the bar 
end-faces. The disk forms the first plate of a capacitor the second plate of which is another 
disk parallel and very close to the first one (� ��� µm). This last disk is mechanically 
connected to the bar by just a thin axial rod, and can thus vibrate in its first, "mushroom" 
shaped, symmetrical mode. As this mode is coupled to the oscillations of the bar, these 
modulate the transducer capacitance. The capacitor is charged to a charge of about 1.6 µC 
by means of a voltage generator which is then disconnected. The capacitance oscillation 
results then in a voltage signal across the capacitor. 

The signal is fed to an FET preamplifier with a 12.5 � 0.1 GΩ  input impedance and 

measured noise temperature and resistance of 100nT mK≅  and 2.4nR M≅ Ω  
respectively11. The signal is further amplified by a commercial low noise amplifier12.  

The measurements consist of the following procedure: the bar is excited by a very short 
pulse of force with known amplitude and time of arrival. The resulting output signal in then 
collected and analysed in order to estimate, via a suitable processing algorithm, the 
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amplitude and time of arrival. The true and the estimated values for both parameters are 
then compared in order to evaluate the measurement errors. 

To apply the force pulse, a force actuator is mounted on the opposite side of the bar. This 
device is just like the transducer except that its first symmetrical mode is found at ������
Hz, well above the resonant frequency of the detector, and that the capacitor gap is wider 
(200µm) than that of the transducer. The force pulse is generated by feeding on top of the 

dc bias, via a decoupling capacitor, a voltage signal ( ) ( )
2

2

coso

t

o oV t V e tτ ω
−

= , with ωo  ���π 

kHz and τo  ��  � ��� !���� �� �����������
� ������ �

������� �	
� �
������� !��"
� ����
�

( ) ( )oE
f t V t

C
= thus crudely simulates the shape of the signal expected from a gravitational 

collapse event. 
The signal generator is triggered by an external TTL signal (Fig. 3) which is also sent to 

a GPS clock that returns the Universal Time (UT) to the acquisition workstation up to a 
precision of a few hundreds of ns. In this way we are able to tag each impulsive signal with 
comparable accuracy.  

The amplified analog signal is then sampled at 4.9 kHz and converted into an 18 
effective bit digital signal which is stored on 4.5 Gbytes magnetic tapes. Because of the 
presence of analog and digital filters on the acquisition line, a delay is introduced, which 
has been measured to be 1.976 0.001 ms± .  

The pulse arrival time is estimated by filtering data as discussed in section 2. Moreover, 
to keep track of detector parameters drifts due to slow changes of temperature and bias 
electric field, the Wiener filter has been made adaptive: the filter parameters (zeroes and 
poles of the transfer function) are periodically adjusted by maximising the signal to noise 
ratio of a high amplitude calibration pulse. When the maximum SNR is reached, the filter 
gives the correct amplitude and arrival time of any impulsive event.  

For each SNR value we have collected at least a few hundreds of events. At low SNR 
(i.e. SNR ��#$��%	
��
����
&��������� ���
���
� ���
�&���
����'��
���� (�� �$��%
�	��
�
collected more than 5000 events.  

 

4. Timing Results 
With reference to fig.1, we have separated the uncertainty in the estimate of the arrival 

time into the "phase error" 
k

tφ  and the "peak error" k  by writing ˆ
k

t t kTφ ∗= +   where k  is 

the nearest integral value to the ratio ˆ t / T0 . There is no ambiguity in assigning an event to 
the corresponding peak order, since peaks are well separated from each other  

In Fig 4 we show the joint histogram for φk and k for SNR=6. We find that within the 
statistical uncertainty there is no correlation between the mean and variance of tφk

 and k at 

least for k� �� 
In fig.5 we report the standard deviation of tφk

 for events in the central peak (k=0) at 

different SNR. The solid line represents the fit to the experimental data of the power law 
/P SNR , from which we obtain 178 3P sµ= ± . This value has to be compared with 1/ωo 

185 µs. 
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In Fig. 6 we report the histogram of the distribution of k, which is just the projection of 
the bidimensional histogram of Fig. 4 over the k axis. Again that data refer to SNR � 6 .  

In Fig. 7 we plot the standard deviation σk  of k as a function of SNR. The error bar 
associated with each data point of Fig. 7 has been estimated as follows: for SNR� ��������
spread over many integer values and the standard gaussian estimator of the variance is a 
reasonable choice. In this case the variance of the estimate has a relative error ��)(�*+$��
where eN  is the total number of events in the histogram.  

At high SNR (> 10), most of the events fall into the central peak, which gives no 
contribution to the estimate of the variance, and hence the error on the latter must be much 
higher than the gaussian estimate. Assuming the Poisson distribution for the rare events 
falling outside the central peak we calculate that the relative error on σk  is of order 

01/ e eN N− , where Ne0  is the number of events with k � 0 .  

 

5. Conclusions  
The experimental results obtained above support quantitatively the standard theory 

presented in Sec. 1. To be specific the result show that: i) tφ k
 is independent of k; ii) that 

eq. (9) for the phase noise is obeyed; iii) that, for the kind of “one beatnote” autocorrelation 
function we achieved with our room temperature detector, eq. 13 holds. It must be noted 
that the room temperature detector parameters where found13 to be ω*� �#���&*���&�τ ��,��
ms, so that one is in the régime of equation (13 a), i.e. 2

* 0 / 4 1T kω τ > , only for k �� -��
However it can be seen from fig. 7 that experimental data fit the theoretical behaviour of σk  
vs SNR even at high SNR, where events with k ��-���
��
�'�����
�'��.��	����
�
�%
���'�
that eq. (13 a) holds. 

The overall timing ability of the room temperature detector is then such that for 
SNR > 20 the total uncertainty on the arrival time is σt �� ,/�µs/SNR. 

The uncertainty is mainly dominated by the detector being in the régime of eq. (13 a) due 
to a non optimal matching of the transducer to the detector and to a comparatively poor 
performance of our FET amplifier as compared, for instance, to a SQUID one. 

 The transducer used in the present experiment has been indeed optimised to work at 
low temperature with a low noise SQUID amplifier. Matching to those conditions yielded 
to a mass of M=2.17 kg and to an unperturbed frequency value for the transducer of ν=875 
Hz at room temperature. An optimal choice for the room temperature detector would have 
yielded a much lower value for the mass, M ������������	���&
���������	
�����"
��!��	
�
above mentioned limitation. 

 When the same transducer will be assembled on AURIGA and if a SQUID noise 
performance corresponding to a noise energy density per unit frequency of ε �� ������ , the 
detector will be found in the régime described by eq. (13 b) with τ � 20 ms. This should 
give the same timing performance as that achieved above but for SNR > 8. 

We believe that the main result of our test are the prospects it opens for the near future, 
when different kinds of detectors will be operating together. For the class of impulsive 
gravitational signals (SN explosions, to give an example) without a characteristic waveform 
pattern, comparison between different detectors is the only way to reject spurious events 
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and gain informations on the signal, and accurate timing on each of them is the conditio 
sine qua non. 

At the moment 5 resonant bars are operating worldwide, so that simple triangulations 
can be performed to determine the source position by measuring time-of-flight delays 
between different detectors. The timing precision we have reached is sufficient to apply this 
method even at regional scales, as for the Italian gravitational wave detectors AURIGA, 
NAUTILUS and VIRGO.  

High precision absolute timing, however, opens the way to a more accurate method of 
analysis of gravitational signals. In fact, it has been shown2 that with at least 6 resonant bars 
one can reconstruct on the same wavefront the amplitude and direction of propagation of 
the wave, in order to solve “the inverse problem” and test the Riemann tensor’s 
transversality and tracelessness. Source position can also be determined within few arcmin. 
This method can be easily extended to the upcoming global network of bars (AURIGA, 
NAUTILUS) and interferometers (TAMA 300, GEO 600, LIGO, VIRGO), which all are 
expected to have the same sensitivity at 1 kHz, and will thus provide the first actual 
gravitational wave observatory. 

In addition, correlation between instruments operating on different physical principles, 
like resonant bars and interferometers, is very important not only because it provides a way 
to compare independently generated data, but also because different detectors have different 
noise sources and hence spuria rejection will be much more reliable. 
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Caption to figures 

 
 

Fig. 1 Pattern of the autocorrelation function R(t) , with ω

� 5300 rad / s , Q


� 200  and 

β � 150 rad / s . These parameters has been measured on the room temperature detector.  
 
Fig. 2 Suspension stages of the room temperature detector. The copper rod wrapped around 
the bar central section gives a mechanical attenuation of -60 dB at the bar resonant 
frequency (about 850 Hz) while the overall measured attenuation (metalgummy + lead 
blocks + steel cantilever + copper rod), at the same frequency, is of the order of -150 dB. 
 
Fig. 3 Scheme of the excitation and readout systems for timing measurements. The TTL 
triggering signal is sent both to the syntetized function generator, which excites the bar 
trough the calibration transducer and to the GPS clock, which provides the time tag 
associate with the event. The amplified signal from the resonant capacitive transducer is 
digitized by the ADC and its samples are tagged by the same GPS clock with an accuracy of 
about 0.1 µs .  
 
Fig. 4 Complete “peak” vs. “phase” distribution of arrival times with SNR � 6  and over 
5000 trials; the "true" arrival time is t=0. The phase error is given in unit of fraction of the 
period T0=178 µs. Notice that the phase error never exceed T0/4. 
 
Fig. 5 Fit to the experimental data (continuous line—) and theoretical (dotted line ��� ) 
curve of the “phase” standard deviation σφ  as a function of SNR. The experimental points 

refer to the central peak events.  
 
Fig. 6 “Peak” distribution of the arrival times obtained with SNR � 6   
 
Fig. 7 Experimental (• ) and theoretical (��� ) values of the “peak” error as a function of 
SNR. If σk � 1  (i.e. SNR � 20 ) the total uncertainty of the arrival time reduces to the phase 
contribution of Fig. 4.  
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