236 research outputs found

    Risk-Based Design of Socio-Cyber-Physical Systems

    Get PDF
    The aim of risk management of socio-cyber-physical systems at designing is the integral safety, which ensures their coexistence with their vicinity  throughout their life cycles. On the basis of present knowledge and experience, part of risks that threaten socio-cyber-physical systems shall be mitigated by preentive measures during their designing and manufacturing. Due to dynamic changes of the world, the conditions of socio-cyber-physical systems at operation change. If  changes exceed the socio-cyber-physical systems´ safety limits which were inserted into their designs, the accidents or  socio-cyber-physical sysems´ failures occur. The presented risk management plan is tool which ensures the prevention of such unaccepted situations and the safety.  

    Detection of Voigt Spectral Line Profiles of Hydrogen Radio Recombination Lines toward Sagittarius B2(N)

    Full text link
    We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein shows that RRLs of higher principal quantum number (n>90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high sensitivity, high resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial towards advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM)

    The use of a silicone-based biomembrane for microaerobic H2S removal from biogas

    Get PDF
    A lab-scale bio-membrane unit was developed to improve H2S removal from biogas through microaeration. Biomembrane separated biogas from air and consisted of a silicone tube covered by microaerobic biofilm. This setup allowed efficient H2S removal while minimizing biogas contamination with oxygen and nitrogen. The transport and removal of H2S, N-2, O-2, CH4 and CO2 through bare membrane, wet membrane and biomembrane was investigated. Membrane allowed the transfer of gases through it as long as there was enough driving force to induce it. H2S concentration in biogas decreased much faster with the biomembrane. The permeation of gases through the membranes decreased in order: H2S > CO2 > CH4 > O-2 > N-2. H2S removal efficiency of more than 99% was observed during the continuous experiment. Light yellow deposits on the membrane indicated the possible elemental sulfur formation due to biological oxidation of H2S. Thiobacillus thioparus was detected by FISH and PCR-DGGE

    Comparison of the miRNA profiles in HPV-positive and HPV-negative tonsillar tumors and a model system of human keratinocyte clones

    Get PDF
    Background Better insights into the molecular changes involved in virus-associated and -independent head and neck cancer may advance our knowledge of HNC carcinogenesis and identify critical disease biomarkers. Here we aimed to characterize the expression profiles in a matched set of well-characterized HPV-dependent and HPV-independent tonsillar tumors and equivalent immortalized keratinocyte clones to define potential and clinically relevant biomarkers of HNC of different etiology. Methods Fresh frozen tonsillar cancer tissues were analyzed together with non-malignant tonsillar tissues and compared with cervical tumors and normal cervical tissues. Furthermore, relative miRNAs abundance levels of primary and immortalized human keratinocyte clones were evaluated. The global quantitation of miRNA gene abundance was performed using a TaqMan Low Density Array system. The confirmation of differentially expressed miRNAs was performed on a set of formalin-fixed paraffin-embedded tumor samples enriched for the tumor cell fraction by macrodissection. Results We defined 46 upregulated and 31 downregulated miRNAs characteristic for the HPV-positive tonsillar tumors and 42 upregulated miRNAs and 42 downregulated miRNAs characteristic for HPV-independent tumors. In comparison with the expression profiles in cervical tumors, we defined miR-141-3p, miR-15b-5p, miR-200a-3p, miR-302c-3p, and miR-9-5p as specific for HPV induced malignancies. MiR-335-5p, miR-579-3p, and miR-126-5p were shared by the expression profiles of HPV-positive tonsillar tumors and of the HPV immortalized keratinocyte clones, whereas miR-328-3p, miR-34c-3p, and miR-885-5p were shared by the miRNA profiles of HPV-negative tonsillar tumors and the HPV-negative keratinocytes. Conclusions We identified the miRNAs characteristic for HPV-induced tumors and tonsillar tumors of different etiology, and the results were compared with those of the model system. Our report presents the basis for further investigations leading to the identification of clinically relevant diagnostic and/or therapeutic biomarkers for tumors of viral and non-viral etiology
    corecore