519 research outputs found

    Disturbance, sediment stability, and trophic structure of soft-bottom communities

    Get PDF
    Previous studies of marine soft-bottom communities have shown (1) that natural disturbances (especially biologically-mediated disturbances, which are usually localized and recur reasonably frequently) help maintain spatio-temporal heterogeneity of communities, and (2) that biogenic modification of sediment can affect sediment stability with respect to fluid forces and geotechnical properties and that this is an important factor in community organization, particularly in the trophic structure of the macrofauna. It is argued in this paper that natural disturbances, and the ensuing biogenic alterations to sediment stability, may be important in maintaining trophically-mixed communities where deposit feeders do not have an overriding influence on sedimentary properties. The hypothesis is presented that an initial post-disturbance response by micro- and meiobenthos leads to an increase in sediment stability as a result of mucous-binding of sediment, and that this stage may be of critical significance to potential suspension-feeding colonists if they are competing with deposit feeders for space. It is suggested, partly as a corollary to this hypothesis, that there may be marked differences in the structure and function of meiofaunal communities co-occurring with deposit-feeding and suspension-feeding macrofaunas. Implications for macrofaunal trophic structure of seasonal changes in sediment stability are also examined. Several areas for future research are recommended

    Abundance of small individuals influences the effectiveness of processing techniques for deep-sea nematodes

    Get PDF
    Nematodes are the most abundant metazoans of deep-sea benthic communities, but knowledge of their distribution is limited relative to larger organisms. Whilst some aspects of nematode processing techniques, such as extraction, have been extensively studied, other key elements have attracted little attention. We compared the effect of (1) mesh size (63, 45, and 32 μm) on estimates of nematode abundance, biomass, and body size, and (2) microscope magnification (50 and 100×) on estimates of nematode abundance at bathyal sites (250-3100 m water depth) on the Challenger Plateau and Chatham Rise, south-west Pacific Ocean. Variation in the effectiveness of these techniques was assessed in relation to nematode body size and environmental parameters (water depth, sediment organic matter content, %silt/clay, and chloroplastic pigments). The 63-μm mesh retained a relatively low proportion of total nematode abundance (mean ±SD = 55 ±9%), but most of nematode biomass (90 ± 4%). The proportion of nematode abundance retained on the 45-μm mesh in surface (0-1 cm) and subsurface (1-5 cm) sediment was significantly correlated (P < 0.01) with %silt/clay (R² = 0.39) and chloroplastic pigments (R² = 0.29), respectively. Variation in median nematode body weight showed similar trends, but relationships between mean nematode body weight and environmental parameters were either relatively weak (subsurface sediment) or not significant (surface sediment). Using a low magnification led to significantly lower (on average by 43%) nematode abundance estimates relative to high magnification (P < 0.001), and the magnitude of this difference was significantly correlated (P < 0.05) with total nematode abundance (R²p = 0.53) and the number of small (≤ 250 μm length) individuals (R²p = 0.05). Our results suggest that organic matter input and sediment characteristics influence the abundance of small nematodes in bathyal communities. The abundance of small individuals can, in turn, influence abundance estimates obtained using different mesh sizes and microscope magnifications

    Evaluation of a Liquid Amine System for Spacecraft Carbon Dioxide Control

    Get PDF
    The analytical and experimental studies are described which were directed toward the acquisition of basic information on utilizing a liquid amine sorbent for in use in a CO2 removal system for manned spacecraft. Liquid amine systems are successfully used on submarines for control of CO2 generated by the crew, but liquid amines were not previously considered for spacecraft applications due to lack of development of satisfactory rotary phase separators. Developments in this area now make consideration of liquid amines practical for spacecraft system CO2 removal. The following major tasks were performed to evaluate liquid amine systems for spacecraft: (1) characterization, through testing, of the basic physical and thermodynamic properties of the amine solution; (2) determination of the dynamic characteristics of a cocurrent flow absorber; and (3) evaluation, synthesis, and selection of a liquid amine system concept oriented toward low power requirements. A low weight, low power system concept was developed. Numerical and graphical data are accompanied by pertinent observations

    Modelling nitrogen mineralization from manures: representing quality aspects by varying C:N ratio of sub-pools

    Get PDF
    The mineralization/immobilization of nitrogen when organic sources are added to soil is represented in many simulation models as the outcome of decomposition of the added material and synthesis of soil organic matter. These models are able to capture the pattern of N release that is attributable to the N concentration of plant materials, or more generally the C:N ratio of the organic input. However, the models are unable to simulate the more complex pattern of N release that has been observed for some animal manures, notably materials that exhibit initial immobilization of N even when the C:N of the material suggests it should mineralize N. The APSIM SoilN module was modified so that the three pools that constitute added organic matter could be specified in terms of both the fraction of carbon in each pool and also their C:N ratios (previously it has been assumed that all pools have the same C:N ratio). It is shown that the revised model is better able to simulate the general patterns on N mineralized that has been reported for various organic sources. By associating the model parameters with measured properties (the pool that decomposes most rapidly equates with water-soluble C and N; the pool that decomposes slowest equates with lignin-C) the model performed better than the unmodified model in simulating the N mineralization from a range of feeds and faecal materials measured in an incubation experimen

    Pseudo-cryptic speciation in coccolithophores

    Get PDF
    Coccolithophores are a group of calcifying unicellular algae that constitute a major fraction of oceanic primary productivity, play an important role in the global carbon cycle, and are key biostratigraphic marker fossils. Their taxonomy is primarily based on the morphology of the minute calcite plates, or coccoliths, covering the cell. These are diverse and include widespread fine scale variation, of which the biological/taxonomic significance is unknown. Do they represent phenotypic plasticity, genetic polymorphisms, or species-specific characters? Our research on five commonly occurring coccolithophores supports the hypothesis that such variation represents pseudocryptic speciation events, occurring between 0.3 and 12.9 million years ago from a molecular clock estimation. This finding suggests strong stabilizing selection acting on coccolithophorid phenotypes. Our results also provide strong support for the use of fine scale morphological characters of coccoliths in the fossil record to improve biostratigraphic resolution and paleoceanographic data retrieval

    Toward Enriched Conceptions of Work Learning: Participation, Expansion, and Translation Among Individuals With/In Activity

    Get PDF
    Despite the long recognition in HRD theory that learning is socially and materially situated in activity and relations, HRD literature indicates a continuing strong emphasis on individualistic theories representing learning as knowledge acquisition or individual development. It is argued here that understandings of work learning within HRD theory can be fruitfully enriched by more fully incorporating practice-based perspectives. Three contemporary theories that analyse learning as a relation of individuals with/in activity have been selected for discussion here: the participational perspective of situated cognition, the notion of expansion from cultural-historical activity theory, and the constructs of translation and mobilization presented by actor-network theory. While these are not particularly new to HRD, the contribution of this discussion is to bring together these theories, along with published empirical workplace research based on them, to highlight selected dynamics that may be useful tools for HRD theory development. One element in particular is read across the three theories: the dialectic of ‘flying’ and ‘grounding’, or lines of discontinuity and continuity characterising work learning. The argument is theory-driven, drawing from HRD literature of work learning and practice-based theories of social activity and knowledge production

    Vortex structure and resistive transitions in high-Tc superconductors

    Full text link
    The nature of the resistive transition for a current applied parallel to the magnetic field in high-Tc materials is investigated by numerical simulation on the three dimensional Josephson junction array model. It is shown by using finite size scaling that for samples with disorder the critical temperature Tp for the c axis resistivity corresponds to a percolation phase transition of vortex lines perpendicularly to the applied field. The value of Tp is higher than the critical temperature for j perpendicular to H, but decreases with the thickness of the sample and with anisotropy. We predict that critical behavior around Tp should reflect in experimentally accessible quantities, as the I-V curves.Comment: 8 pages + 6 figure

    First-Order Melting and Dynamics of Flux Lines in a Model for YBa2_2Cu3_3O7δ_{7-\delta}

    Full text link
    We have studied the statics and dynamics of flux lines in a model for YBCO, using both Monte Carlo simulations and Langevin dynamics. For a clean system, both approaches yield the same melting curve, which is found to be weakly first order with a heat of fusion of about 0.02kBTm0.02 k_BT_m per vortex pancake at a field of 50kG.50 {\rm kG}. The time averaged magnetic field distribution experienced by a fixed spin is found to undergo a qualitative change at freezing, in agreement with NMR and μSR\mu {\rm SR} experiments. Melting in the clean system is accompanied by a proliferation of free disclinations which show a clear B-dependent 3D-2D crossover from long disclination lines parallel to the c-axis at low fields, to 2D ``pancake'' disclinations at higher fields. Strong point pins produce a logarithmical lnt\ln t relaxation which results from slow annealing out of disclinations in disordered samples.Comment: 31 pages, latex, revtex, 12 figures available upon request, No major changes to the original text, but some errors in the axes scale for Figures 6 and 7 were corrected(new figures available upon request), to be published in Physical Review B, July 199

    The phase diagram of high-Tc's: Influence of anisotropy and disorder

    Full text link
    We propose a phase diagram for the vortex structure of high temperature superconductors which incorporates the effects of anisotropy and disorder. It is based on numerical simulations using the three-dimensional Josephson junction array model. We support the results with an estimation of the internal energy and configurational entropy of the system. Our results give a unified picture of the behavior of the vortex lattice, covering from the very anysotropic BiSrCaCuO to the less anisotropic YBaCuO, and from the first order melting ocurring in clean samples to the continuous transitions observed in samples with defects.Comment: 8 pages with 7 figure

    The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects

    Get PDF
    Ionic liquids are a diverse range of charged chemicals with low volatility and often liquids at ambient temperatures. This characteristic has in part lead to them being considered environmentally-friendly replacements for existing volatile solvents. However, methylimidazolium ionic liquids are slow to break down in the environment and a recent study at Newcastle detected 1 octyl 3 methylimidazolium (M8OI) – an 8 carbon variant methylimidazolium ionic liquid - in soils in close proximity to a landfill site. The current M8OI toxicity database in cultured mammalian cells, in experimental animal studies and in model indicators of environmental impact are reviewed. Selected analytical data from the Newcastle study suggest the soils in close proximity to the landfill site, an urban soil lacking overt contamination, had variable levels of M8OI. The potential for M8OI - or a structurally related ionic liquid – to trigger primary biliary cholangitis (PBC), an autoimmune liver disease thought to be triggered by an unknown agent(s) in the environment, is reviewed
    corecore