14 research outputs found

    Sustaining productivity of a Vertosol at Warra, Queensland, with fertilisers, no-tillage or legumes. 8. Effect of duration of lucerne ley on soil nitrogen and water, wheat yield and protein.

    Get PDF
    Soil nitrogen (N) supply in the Vertosols of southern Queensland, Australia has steadily declined as a result of long-term cereal cropping without N fertiliser application or rotations with legumes. Nitrogen-fixing legumes such as lucerne may enhance soil N supply and therefore could be used in lucerne-wheat rotations. However, lucerne leys in this subtropical environment can create a soil moisture deficit, which may persist for a number of seasons. Therefore, we evaluated the effect of varying the duration of a lucerne ley (for up to 4 years) on soil N increase, N supply to wheat, soil water changes, wheat yields and wheat protein on a fertility-depleted Vertosol in a field experiment between 1989 and 1996 at Warra (26degrees 47'S, 150degrees53'E), southern Queensland. The experiment consisted of a wheat-wheat rotation, and 8 treatments of lucerne leys starting in 1989 (phase 1) or 1990 (phase 2) for 1,2,3 or 4 years duration, followed by wheat cropping. Lucerne DM yield and N yield increased with increasing duration of lucerne leys. Soil N increased over time following 2 years of lucerne but there was no further significant increase after 3 or 4 years of lucerne ley. Soil nitrate concentrations increased significantly with all lucerne leys and moved progressively downward in the soil profile from 1992 to 1995. Soil water, especially at 0.9-1.2 m depth, remained significantly lower for the next 3 years after the termination of the 4 year lucerne ley than under continuous wheat. No significant increase in wheat yields was observed from 1992 to 1995, irrespective of the lucerne ley. However, wheat grain protein concentrations were significantly higher under lucerne-wheat than under wheat wheat rotations for 3-5 years. The lucerne yield and soil water and nitrate-N concentrations were satisfactorily simulated with the APSIM model. Although significant N accretion occurred in the soil following lucerne leys, in drier seasons, recharge of the drier soil profile following long duration lucerne occurred after 3 years. Consequently, 3- and 4-year lucerne-wheat rotations resulted in more variable wheat yields than wheat-wheat rotations in this region. The remaining challenge in using lucerne-wheat rotations is balancing the N accretion benefits with plant-available water deficits, which are most likely to occur in the highly variable rainfall conditions of this region

    Tumour necrosis factor - alpha mediated mechanisms of cognitive dysfunction

    Get PDF
    Background: Tumour necrosis factor - alpha (TNF-α) is a pro-inflammatory cytokine that combines a plethora of activities in the early stages of an immune response. TNF-α has gained increasing importance given TNF-α upregulation in multiple brain pathologies like neuropsychiatric conditions such as depression, schizophrenia, as well as neuroinflammatory disorder like multiple sclerosis (MS).\ud \ud Aim: The aim of this review is to critically analyse neurobiological, immunological and molecular mechanisms through which TNF-α influences the development of cognitive dysfunction.\ud \ud Principal findings/results: The review presents several lines of original research showing that the immunological properties of TNF-α exacerbate inflammatory responses in the central nervous system such as microglial and endothelial activation, lymphocytic and monocytic infiltration and the expression of downstream pro-inflammatory cytokines and apoptotic factors. Depression, schizophrenia, and MS all manifest symptoms of activated immune response along with cognitive dysfunction, with TNF-α overexpression as a central clinical feature common to these disorders. Furthermore, TNF-α acts negatively on neuroplasticity and the molecular mechanisms of memory and learning (i.e., long-term potentiation and long-term depression). TNF-α also exerts influence over the production of neurotrophins (i.e., nerve growth factor and brain-derived neurotrophic factor), neurogenesis, and dendritic branching.\ud \ud Conclusions/significance: This review outlines that TNF-α and its receptors have a substantial yet underappreciated influence on the development and progression of neuropsychiatric symptoms across several disease entities. An improved understanding of these underlying mechanisms may help develop novel therapeutic targets in the form of drugs specifically targeting downstream products of TNF-α activation within the central nervous system

    Genetics of inflammatory bowel disease

    No full text

    Complications of radiation therapy and factors in their prevention

    No full text
    corecore