45 research outputs found

    Artificial Neural Networks for Control of a Grid-Connected Rectifier/Inverter Under Disturbance, Dynamic and Power Converter Switching Conditions

    Get PDF
    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using backpropagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system

    Eruption type probability and eruption source parameters at Cotopaxi and Guagua Pichincha volcanoes (Ecuador) with uncertainty quantification

    Get PDF
    Future occurrence of explosive eruptive activity at Cotopaxi and Guagua Pichincha volcanoes, Ecuador, is assessed probabilistically, utilizing expert elicitation. Eight eruption types were considered for each volcano. Type event probabilities were evaluated for the next eruption at each volcano and for at least one of each type within the next 100 years. For each type, we elicited relevant eruption source parameters (duration, average plume height, and total tephra mass). We investigated the robustness of these elicited evaluations by deriving probability uncertainties using three expert scoring methods. For Cotopaxi, we considered both rhyolitic and andesitic magmas. Elicitation findings indicate that the most probable next eruption type is an andesitic hydrovolcanic/ash-emission (~ 26–44% median probability), which has also the highest median probability of recurring over the next 100 years. However, for the next eruption at Cotopaxi, the average joint probabilities for sub-Plinian or Plinian type eruption is of order 30–40%—a significant chance of a violent explosive event. It is inferred that any Cotopaxi rhyolitic eruption could involve a longer duration and greater erupted mass than an andesitic event, likely producing a prolonged emergency. For Guagua Pichincha, future eruption types are expected to be andesitic/dacitic, and a vulcanian event is judged most probable for the next eruption (median probability ~40–55%); this type is expected to be most frequent over the next 100 years, too. However, there is a substantial probability (possibly >40% in average) that the next eruption could be sub-Plinian or Plinian, with all that implies for hazard levels

    Platelets Regulate Pulmonary Inflammation and Tissue Destruction in Tuberculosis.

    Get PDF
    RATIONALE: Platelets may interact with the immune system in tuberculosis (TB) to regulate human inflammatory responses that lead to morbidity and spread of infection. OBJECTIVES: To identify a functional role of platelets in the innate inflammatory and matrix-degrading response in TB. METHODS: Markers of platelet activation were examined in plasma from 50 patients with TB before treatment and 50 control subjects. Twenty-five patients were followed longitudinally. Platelet-monocyte interactions were studied in a coculture model infected with live, virulent Mycobacterium tuberculosis (M.tb) and dissected using qRT-PCR, Luminex multiplex arrays, matrix degradation assays, and colony counts. Immunohistochemistry detected CD41 (cluster of differentiation 41) expression in a pulmonary TB murine model, and secreted platelet factors were measured in BAL fluid from 15 patients with TB and matched control subjects. MEASUREMENTS AND MAIN RESULTS: Five of six platelet-associated mediators were upregulated in plasma of patients with TB compared with control subjects, with concentrations returning to baseline by Day 60 of treatment. Gene expression of the monocyte collagenase MMP-1 (matrix metalloproteinase-1) was upregulated by platelets in M.tb infection. Platelets also enhanced M.tb-induced MMP-1 and -10 secretion, which drove type I collagen degradation. Platelets increased monocyte IL-1 and IL-10 and decreased IL-12 and MDC (monocyte-derived chemokine; also known as CCL-22) secretion, as consistent with an M2 monocyte phenotype. Monocyte killing of intracellular M.tb was decreased. In the lung, platelets were detected in a TB mouse model, and secreted platelet mediators were upregulated in human BAL fluid and correlated with MMP and IL-1β concentrations. CONCLUSIONS: Platelets drive a proinflammatory, tissue-degrading phenotype in TB

    Protective effect of the medicinal herb infusion “horchata” against oxidative damage in cigarette smokers: An ex vivo study

    No full text
    Cigarette smoking has been associated with an increase in oxidative stress (OS) and is considered a predisposing factor to chronic noncommunicable diseases, whilst dietary antioxidants has been proposed as an alternative to cope with this oxidative stress. In this study, 20 smokers and 20 non-smokers were studied with the aim of determining their antioxidant status, as well as the ability of an infusion of 23 medicinal plants, to counteract the damage caused by OS. The plasma, red blood cells (RBCs) and polymorphonuclear cells (PBMCs) of both groups were incubated or not with the horchata infusion extract and then the OS markers, genotoxicity, nanostructure of RBCs membrane and genes related to oxidative responses and cellular functionality were evaluated. Up to 33 different compounds, mainly quercetin glycosides, were identified in the extract. A significant deterioration in the antioxidant status in smokers compared to non-smokers was found. The horchata infusion extract improved the nanostructure of RBCs and DNA damage, as well as the activity of the endogenous antioxidant enzymes and markers of oxidative damage to lipid, and proteins in plasma, RBCs and PBMCs in both groups, whilst no significant changes were found in the expression of different genes related to OS response

    Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight

    No full text
    BACKGROUND: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird’s flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird’s direction) throughout a bird's journey. RESULTS: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. CONCLUSIONS: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2051-3933-1-4) contains supplementary material, which is available to authorized users
    corecore