8 research outputs found

    Stable isotope analysis indicates resource partitioning and trophic niche overlap in larvae of four tuna species in the Gulf of Mexico

    Get PDF
    In this study we assessed the trophic ecology of bluefin tuna Thunnus thynnus larvae from the Gulf of Mexico, together with the co-occurring larvae of blackfin tuna T. atlanticus, bullet tuna Auxis rochei, and skipjack Katsuwonus pelamis, using both bulk-tissue stable isotope analysis (SIAbulk) and compound-specific analysis of amino acids (CSIAAA). Bulk nitrogen (δ15Nbulk) and carbon (δ13Cbulk) values differed significantly among species, suggesting partitioning of resources due to an adaptive process allowing these tunas to share the ecosystem’s trophic resources during this early life period. K. pelamis had the largest isotopic niche width, likely due to piscivorous feeding at an earlier age compared to the other species, with an isotopic niche overlap of 17.5% with T. thynnus, 15.8% with T. atlanticus, and 31.2% with A. rochei. This trophic overlap suggests a mix of competition and trophic differentiation among these 4 species of tuna larvae. Higher nitrogen isotopic signatures in preflexion versus postflexion larvae of T. thynnus measured using both SIAbulk and CSIAAA indicate maternal isotopic transmission, as well as ‘capital breeder’-like characteristics. In contrast, the nitrogen isotopic ratios of the other 3 species were similar between ontogenetic stages. These observations suggest different breeding strategies within the study area for T. atlanticus, K. pelamis, and A. rochei compared to T. thynnus. No significant differences were observed among the 4 species’ trophic positions (TPs) estimated by CSIAAA, whereas a higher TP was observed for T. thynnus by SIAbulk. These differences in TP estimation may be attributed to discrepancies in baseline estimates.Postprint2,48

    LARVAL BLUEFIN TUNA (THUNNUS THYNNUS) TROPHODYNAMICS FROM BALEARIC SEA (WM) AND GULF OF MEXICO SPAWNING ECOSYSTEMS BY STABLE ISOTOPE

    Get PDF
    The present study uses stable isotopes of nitrogen and carbon (δ15N and δ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6-10 mm SL) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). The study analyzes ontogenetic changes in the food sources and trophic levels (TL) of BFT larvae from each spawning habitat. The results discuss differences in the ontogenic dietary shifts observed in the BFT larvae from the GOM and MED as well as trophodynamic differences in relation to the microzooplanktonic baselines used for estimating trophic enrichment. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their early life growth strategy.Versión de edito

    Do western Atlantic bluefin tuna spawn outside of the Gulf of Mexico? Results from a larval survey in the Atlantic Ocean in 2013

    Get PDF
    In 2013, a larval survey was conducted north and east of the Bahamas aboard the NOAA Ship NANCY FOSTER. Sampling areas were selected based on larval habitat model predictions, and daily satellite analysis of surface temperature and ocean color. Samples were collected at 97 stations, and 18 larval BFT (Thunnus thynnus) were found at 9 stations. Six of these stations came from oceanographically complex regions characterized by cyclonic and anticyclonic gyres. Larvae ranged in size from 3.22mm to 7.58 mm, corresponding to approximately 5-12 days in age. Analysis of satellite derived surface currents and CTD data suggest that these larvae were spawned and retained in this area. Larval habitat models show areas of high predicted abundance extending east to 650 W, but the actual extent of spawning in this area remains unknown.En prens

    Trophic Ecology of Atlantic Bluefin Tuna (Thunnus thynnus) Larvae from the Gulf of Mexico and NW Mediterranean Spawning Grounds: A Comparative Stable Isotope Study

    Get PDF
    The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlyingmicrozooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages. These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton— zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvaeVersión del editor4,411
    corecore