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SUMMARY 

The present study uses stable isotopes of nitrogen and carbon (δ15N and δ13C) as 

trophic indicators for Atlantic bluefin tuna larvae (BFT) (6-10 mm SL) in the highly 

contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic 

Sea (MED). The study analyzes ontogenetic changes in the food sources and trophic 

levels (TL) of BFT larvae from each spawning habitat. The results discuss differences in 

the ontogenic dietary shifts observed in the BFT larvae from the GOM and MED as well 

as trophodynamic differences in relation to the microzooplanktonic baselines used for 

estimating trophic enrichment. Significant trophic differences between the GOM and 

MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, 

which may have important implications in their early life growth strategy. 
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INTRODUCTION 

 

Due to its highly migratory behaviour, Atlantic bluefin tuna (T. thynnus) (BFT) is the 

widest ranging species among teleosts in the pelagic ecosystems of the North Atlantic 

and its adjacent seas, including the Mediterranean (Fromentin and Fonteneau, 2001). 

Bluefin populations are separated into an Eastern and Western Atlantic stock (Block et 

al., 2005; Fromentin and Powers, 2005), each one having distinct spawning grounds 

located in the Gulf of Mexico (GOM) and in the Mediterranean Sea (MED). While 

spawning takes place in the GOM from April to June, in the Mediterranean Sea bluefin 

spawning occurs from June to August (Mather et al. 1995; Scheffer 2001; Fromentin 

and Powers, 2005).  

 

The GOM and the MED larval spawning habitats have well differentiated bio-physical 

and climatic characteristics (Teo et al., 2007; Muhling et al., 2010, 2013; Alemany et 

al., 2010; Reglero et al., 2014), but also share some common features. These include 

warm temperature regimes (21.5-28ºC) in open sea areas where chlorophyll production 

is low and where a series of hydrographic features occur, (frontal systems and eddy 

formation), that facilitate larval retention (Muhling et al., 2013). Such mesoscale 

structures can favor the conditions matching the “ocean triad” hypothesis (Bakun, 2006, 

2013). Major BFT larval abundances appear to be linked to anticyclonic gyres or eddies 

in the Balearic Sea, south of the island of Menorca (García et al. 2005) and eddies 

associated with the GOM Loop Current (Lindo-Atichatti et al., 2012).  

 

The heavy isotope of nitrogen 15N is enriched as it is transferred in higher trophic levels 

(TL), thereby providing an indicator of the trophic positioning of organisms (Minagawa 

& Wada, 1984; Peterson & Fry, 1987; Post, 2002). In addition, the heavy isotope of 

carbon can be used for determining the energy sources of larvae, since it varies 

significantly among primary producers which have different photosynthetic pathways. 

Unlike δN15, δC13 is not strongly affected by trophic transfers (DeNiro & Epstein, 1981; 

Peterson & Fry, 1987; Post, 2002). The most promising development for analyzing the 

structure of food webs is based on the quantification of nitrogen and carbon stable 

isotope analysis, which provides insight in the trophic relationships between organisms. 

 



SCRS/2014/103 
 

 3

This study thus intends to further the understanding of the trophodynamics that drive 

early life stages of BFT. We aimed to understand how larvae take advantage of the 

trophic resources of their surrounding environment through a comparative approach of 

contrasting BFT spawning ecosystems. The comparative trophic ecology of GOM and 

MED bluefin larvae was based on a stable isotope analysis of the larvae in relation to 

baseline feeding levels defined by two differentiated micro- and mesozooplanktonic size 

fractions. 

 

 

MATERIALS AND METHODS 

 

GOM BFT larvae were collected onboard NOAA’s RV Gordon Gunter in the northern 

GOM during spring 2012, from April 24 to May 28, as part of an annual larval survey 

completed by the National Marine Fisheries Service (NMFS) Southeast Area 

Monitoring and Assessment (SEAMAP) Program (Fig. 1A). The MED BFT larvae were 

sampled during summer 2013 (June19 to July 13) in the Balearic Sea, Western 

Mediterranean (Fig. 1B) onboard the RV Socib as part of the Assessment of the Atlantic 

Bluefin TunA population breeding in the western MEditerranean project (ATAME). In 

the GOM, fish larvae were sampled by towing the net between 0 and 10 meters for 10 

minutes using a 505µm mesh net attached to a standard 1 x 2 meter neuston frame, 

whereas in the MED, a squared-mouth Bongo frame of 0.9 meter was used for 

subsurface tows. General Oceanics 2030 flowmeters were placed at the center of the 

net’s mouth to calculate the water volume filtered. 

 

BFT larvae were sorted from plankton samples immediately after retrieval of the 

sample.  Larvae were then preserved frozen at -20 ºC onboard. 49, 31 and 30 larvae 

were selected from East-GOM, West-GOM and MED respectively for stable isotope 

analysis as described in Laiz-Carrión et al., 2013. Lipid correction for δ13C signatures 

was performed following Logan et al 2010. To sample the planktonic component, a 20 

cm diameter Bongo net was positioned above the neuston net to sample different 

zooplankton fractions by employing 55 and 200 μm mesh nets, each one equipped with 

a General Oceanics flowmeter. Mesozooplankton (>200 μm) samples were equally 

divided into two equal aliquots using a Folson plankton sample divider. Samples from 
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the 55 μm mesh nets were sieved on board to separate the microzooplankton (55 to 200 

μm) fraction. The samples were stored frozen at -20ºC freezer.  

 

Hydrographic data were collected at each sampling station using a Seabird 19+ CTD 

profiler cast at a minimum depth of 300 m for both GOM and MED.  

 

 

RESULTS AND DISCUSSION 

 

The average surface temperatures in the E-GOM and W-GOM were significantly higher 

than the MED (over 2-3ºC); and inversely, surface salinity was higher in the MED 

(Table 1). The E-GOM and W-GOM also showed surface temperature differences, with 

the W-GOM being slightly warmer. At 100m depth, temperatures were also much 

warmer in the GOM areas in comparison to the MED, where at 100m depth the water 

masses were characteristic of deep Mediterranean water masses. The Balearic Sea water 

masses showed strong density fronts resulting from the encounter of distinct salinity 

water masses of Mediterranean and Atlantic origin. The Balearic Sea, in general has 

cooler waters during BFT spawning than the GOM (Alemany et al., 2010) with the 

exception of the 2003 heat wave, averaging  23-25ºC at surface. This cooler spawning 

regime in the MED water was confirmed by the difference of average temperatures at 

surface and more specifically at 100m depth (Table 1) recorded during both surveys.  

 

With respect to zooplankton biomass differentiated by size fractions (Table 2) of the 

micro- and mesozooplankton components, the GOM represented a relatively richer 

ecosystem than the MED, which is characterized by its strong oligotrophy. The greatest 

differences in zooplankton biomass were observed in the mesozooplankton fraction (p > 

0.001), where the average GOM mesozooplankton biomass can surpass 10 times the 

average MED values. Both spawning regions have kinetic energy being supplied by 

mesoscale structures that cause eddy and frontal formations (García et al., 2005; Teo et 

al., 2007; Muhling et al., 2010, 2013; Reglero et al., 2014). In contrast, to the shelf 

region, the offshore waters of the GOM although considered oligotrophic, are more 

productive than similar areas in the MED. This is probably due to the nutrient supply 

from the Mississippi River and other freshwater input, coupled with unique 

oceanographic conditions (i.e. Loop Current) that influence the distribution and 
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abundance of pelagic fishes (Richards et al., 1989, 1993 Rooker et al., 2006 Wells and 

Rooker, 2009). 

 

While no differences were observed between the E-GOM and W-GOM BFT larval 

standard length (SL) vs dry weight (DW) relationship, the BFT larvae from the MED 

and GOM (East and West) showed significant differences (Fig. 1). The Med BFT larvae 

had higher DW by SL (ANCOVA, F2, 116 = 125.5; p < 0.001) than either east or west 

GOM larvae (ANCOVA, F2, 116 = 130.9; p < 0.001). Such differences seem to indicate 

differentiated larval growth strategies between spawning ecosystems which presumably 

favors the growth of larvae in the GOM due to greater feeding availability and the 

higher temperature regime of the GOM spawning habitat. During the 2003 

Mediterranean heat wave, the 2003 BFT cohort grew faster not only in SL but in DW in 

a notoriously oligotrophic year in comparison to the 2004-2005 BFT cohorts (García et 

al., 2013). Further daily growth studies will be necessary to corroborate this hypothesis. 

 

The δ15N vs δ13C relationships of the BFT larvae from the three defined spawning 

grounds showed clearly segregated δ15N signatures (Fig. 2), whereas the δ13C values 

appeared more integrated. The lower signature of δ15N of the W-GOM BFT larvae 

could be a consequence of increased nitrate availability in the ecosystem as a result of 

nutrient input from freshwater sources such as the Mississippi River. Greater nutrient 

availability in the ecosystem produces reduction of δ15N in the trophic web (Holmes et 

al., 2002; Montoya et al., 2007). 

 

No significant trend in δ15N signatures were observed in regards to SL (Fig. 3A). 

Highest δ15N values corresponded to BFT from the MED, followed by E-GOM and W-

GOM larvae. The signatures of δ13C of MED BFT were significantly lower than the 

GOM BFT larvae which did not show significant differences between them. However, 

the δ13C values of the MED BFT larvae did show a significant linear increase with SL (r 

= 0.49; p < 0.05; δ13C = -20.5239 + 0.1558·SL), while alternatively, these showed 

significant linear decrease in the E- and W-GOM BFT larvae (r = -0.44; p < 0.05; δ13C 

= -17.1609 - 0.2339·SL and r = -0.40; p < 0.05; δ13C = -17.7657 - 0.1293·SL, 

respectively)(Fig. 3B). The linear increase trend in the MED larvae suggest ontogenic-

related diet shifts towards energy sources of continental origin, while the GOM larval  

energy sources may be more related to neritic processes (Wells and Rooker, 2009).  
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Within this comparative study, the MED BFT showed significantly greater δ15N 

signatures in comparison to the GOM larvae. A significant difference also occurred 

between both E-GOM and the W-GOM larval populations where the former group of 

larvae showed higher δ15N signatures. Isotopic fractionation of N and C are sensitive to 

the differentiated habitat conditions of the general GOM ecosystem.  In a much a 

smaller spatial scale than the GOM system, larval bullet tuna (Auxis rochei) stable 

isotope analysis of N and C have shown differences in their signatures resulting in 

cohort larval growth differences in relation to the nature of water masses in the Balearic 

Sea (Laíz-Carrión et al., 2013). The highest trophic enrichment among the three 

established BFT groupings corresponded to the MED BFT (Fig. 4) which implies a 

greater trophic specialization and a greater trophic niche in these larvae (Malzahn & 

Boersma, 2009; Cherel et al., 2010). This results in a major nitrogen efficiency through 

the food webs (Montoya, 2007).   

 

This comparative study on nitrogen and carbon isotopic fractionation of BFT larvae 

born in the MED and GOM spawning ecosystems has shown that the environmental 

scenarios in which these larvae develop show significant differences in temperature 

regime, nutrient inputs into ecosystems that relate to primary producers and eventually 

in the biomass of primary consumers. BFT larvae from the MED whose waters are more 

oligotrophic showed higher trophic enrichment, and thus, higher trophic level (TL) in 

comparison with the GOM BFT larvae. Moreover, BFT larvae from each ecosystem 

show during ontogeny opposite dietary shifts in their diet. While MED larvae showed 

an increasing trend with size of δ13C signatures, the GOM larvae showed a decrease 

with size suggesting changes in the carbon sources from neritic to oceanic origin and 

vice-versa. These differences stemming from the basic trophic levels of the ecosystem 

to the BFT larvae may pose important implications in the larval growth strategies and 

condition of each population, their competition for feeding resources, their exposure to 

co-occurring apex predator species that could influence larval survival, and thus 

recruitment success of BFT larvae.  
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Table 1. Basic hydrographic data of the selected stations from the East-GOM, West-GOM and Med 
sampling areas. 
 

 5 m depth  
  
 Temperature ºC Salinity ‰  
 Mean±StdDv Max. Min. Mean±StdDv Max. Min.  

E-GOM 25.51 ± 0.55 26.13 24.63 36.07 ± 0.23 36.34 35.64  
W-GOM 26.65 ± 0.59 27.25 25.95 36.34 ± 0.32 36.63 36.03  

MED 22.98 ± 0.68 23.97 21.76 37.72 ± 0.16 38.12 37.51  

100 m depth 

 Temperature ºC Salinity ‰  
E-GOM 19.99 ± 0.74 20.95 19.16 36.43 ± 0.15 36.58 36.18  
W-GOM 20.90 ± 0.39 21.31 20.43 36.50 ± 0.03 36.52 36.45  

MED 13.40 ± 0.15 13.64 13.14 38.24 ± 0.09 38.39 38.09  
 
 
 
Table 2. One-way ANOVA analysis of both micro- and meso-zooplankton size fraction biomass available 
in the selected stations for East-GOM, West-GOM and MED scenarios. Post-hoc comparisons were made 

using a Tukey’s test. Different letters indicate a significant difference between ecosystems. 
 

 Zooplankton Biomass (mg m−3) 
 Microzoop. (55-200 μm) Mesozoop. (>200 μm) 

 Mean±Std.Err. Max. Min.  Mean± Std.Err. Max. Min. 
E-GOM 3.15 ± 0.55 7.81 1.13  44.33 ± 2.47 a 67.84 27.54 
W-GOM 3.20 ± 0.90 5.21 0.39  39.21 ± 3.51 a 45.21 30.72 
MED 1.71 ± 0.40 3.51 0.71 3.93 ± 2.71 b 8.65 0.19
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Figure 1.- Geographical location of the study areas including station map of Both East-
GOM and West-GOM (A) and Med (B) BFT study area and showing the stations 
sampling distribution. (bathymetric image generated from ETOPO database). 
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Figure 2.- BFT larval dry weight (DW) vs standard length (SL) relationships for East 
(black dot), West (grey dot) and Med (white dot) larval cohorts. 
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Figure 3.- Relationship between δ13C and δ15N (‰) in BFT larvae in East (black dot), 
West (grey dot) and Med (white dot) ecosystems. 
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Figure 4.- (A) Nitrogen and (B) carbon-stable isotope ratios and SL relationships of 
BFT larvae in East (black dot), West (grey dot) and Med (white dot) ecosystems. 
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Figure 5.- Mean (±SE) δ13C versus δ15N (‰) values for microzooplankton (squares), 

mesozooplankton (triangles) and T. thynnus larvae (circles) in East (black), West (grey) 

and Med (white) ecosystems. Microzooplankton has been use as baseline as primary 

consumers. 


