894 research outputs found

    Liquid Holdup in Geothermal Wells

    Get PDF
    ABSTRACT Simulation of two-phase flow in geothermal wellbores requires use of empirical correlations for liquid holdup and for friction factor. Use of currently available correlations often yields widely differing results for geothermal wells. A new liquid holdup correlation is devised for cased wellbores using high-quality discharge and downhole pressure and temperature data from flowing geothermal wells. The latter dataset encompasses a wide range of wellbore diameters, discharge rates and flowing enthalpies. The measured wellhead pressures for wells in the dataset display excellent agreement with the pressures computed by using the new holdup correlation

    New Insights into Dissipation in the Electron Layer During Magnetic Reconnection

    Full text link
    Detailed comparisons are reported between laboratory observations of electron-scale dissipation layers near a reconnecting X-line and direct two-dimensional full-particle simulations. Many experimental features of the electron layers, such as insensitivity to the ion mass, are reproduced by the simulations; the layer thickness, however, is about 3-5 times larger than the predictions. Consequently, the leading candidate 2D mechanism based on collisionless electron nongyrotropic pressure is insufficient to explain the observed reconnection rates. These results suggest that, in addition to the residual collisions, 3D effects play an important role in electron-scale dissipation during fast reconnection.Comment: 17 pages, 4 figure

    Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence

    Full text link
    Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion Larmor radius, the ions do not respond to the reconnection dynamics leading to ''electron-only'' reconnection with very large quasi-steady reconnection rates. The transition to more traditional ''ion-coupled'' reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasi-steady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths

    3D Magnetic Reconnection with a spatially confined X-line extent -- Implications for Dipolarizing Flux Bundles and the Dawn-Dusk Asymmetry

    Full text link
    Using 3D particle-in-cell (PIC) simulations, we study magnetic reconnection with the x-line being spatially confined in the current direction. We include thick current layers to prevent reconnection at two ends of a thin current sheet that has a thickness on an ion inertial (di) scale. The reconnection rate and outflow speed drop significantly when the extent of the thin current sheet in the current direction is < O(10 di). When the thin current sheet extent is long enough, we find it consists of two distinct regions; an inactive region (on the ion-drifting side) exists adjacent to the active region where reconnection proceeds normally as in a 2D case. The extent of this inactive region is ~ O(10 di), and it suppresses reconnection when the thin current sheet extent is comparable or shorter. The time-scale of current sheet thinning toward fast reconnection can be translated into the spatial-scale of this inactive region; because electron drifts inside the ion diffusion region transport the reconnected magnetic flux, that drives outflows and furthers the current sheet thinning, away from this region. This is a consequence of the Hall effect in 3D. While this inactive region may explain the shortest possible azimuthal extent of dipolarizing flux bundles at Earth, it may also explain the dawn-dusk asymmetry observed at the magnetotail of Mercury, that has a global dawn-dusk extent much shorter than that of Earth.Comment: 9 pages, 9 figures, submitted to JGR on 01/23/201

    Simulating open quantum systems: from many-body interactions to stabilizer pumping

    Get PDF
    In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions [Nature 470, 486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based ("digital") simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaev's toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum Computatio
    corecore