29 research outputs found

    UV diagnostic of porosity-free mass-loss estimates in B stars

    Full text link
    We seek to establish evidence in UV P Cygni line profiles that the signs of wind clumping and porosity vary with velocity. We aim to demonstrate empirically that while at most wind velocities optically thick clumps cover only a fraction of the stellar surface, close to the terminal velocity where narrow absorption components (NACs) appear in UV lines the covering factor is approximately unity. SEI line-synthesis models are used to determine the radial optical depths of blue and red components of the SiIV 1400 resonance line doublet in a sample of 12 B0 to B4 supergiants. We focus on stars with well developed NACs and relatively low terminal velocity so that the SiIV doublet components can be treated as radiatively decoupled and formed independently. For all 12 stars the mean optical depth ratio of the blue to red components is closer to ~ 2 (i.e. the ratio of oscillator strengths) in the NACs than at intermediate and lower velocities. The product of mass-loss rate and Si^3+ ion fraction calculated from the NAC optical depths is a factor of ~ 2 to 9 higher compared to mass-loss values sampled at ~ 0.4 to 0.6 of the terminal velocity. Since the wind effectively becomes `smooth' at the high NAC velocities and the column density is uniformly distributed over the stellar disk, the optical depths of the NACs are not seriously affected by porosity and this feature thus provides the most reliable measurement of mass-loss rate in the UV lines. Applications of this result to the weak-wind problem of late O-dwarf stars and the "PV mass loss discordance" in early O supergiants are discussed.Comment: Accepted for publication in Astronomy and Astrophysics; 7 pages; 3 figure

    Radio Variability from Co-Rotating Interaction Regions Threading Wolf-Rayet Winds

    Get PDF
    The structured winds of single massive stars can be classified into two broad groups: stochastic structure and organized structure. While the former is typically identified with clumping, the latter is typically associated with rotational modulations, particularly the paradigm of Co-rotating Interaction Regions (CIRs). While CIRs have been explored extensively in the UV band, and moderately in the X-ray and optical, here we evaluate radio variability from CIR structures assuming free-free opacity in a dense wind. Our goal is to conduct a broad parameter study to assess the observational feasibility, and to this end, we adopt a phenomenological model for a CIR that threads an otherwise spherical wind. We find that under reasonable assumptions, it is possible to obtain radio variability at the 10% level. The detailed structure of the folded light curve depends not only on the curvature of the CIR, the density contrast of the CIR relative to the wind, and viewing inclination, but also on wavelength. Comparing light curves at different wavelengths, we find that the amplitude can change, that there can be phase shifts in the waveform, and the the entire waveform itself can change. These characterstics could be exploited to detect the presence of CIRs in dense, hot winds.Comment: to appear inn MNRA

    Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant ξ Per: The Connection between X-Rays and Large-scale Wind Structure

    Get PDF
    We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7 III(n)((f)) star ξ Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of ξ Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N iv λ1718 and Si iv λ1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si iv λ1402, N iv λ1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180°, on the surface of the star. We note that the presence and persistence of two spots separated by 180° suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in ξ Per

    Coordinated UV and X-ray spectroscopic observations of the O-type giant xi Per: the connection between X-rays and large-scale wind structure

    Get PDF
    We present new, contemporaneous HST STIS and XMM observations of the O7 III(n)((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Pper. The variable wind of this star is known to have a 2.086 day periodicity. We use a simple, heuristic spot model which fits the low velocity (near surface) IUE wind line variability very well, to demonstrate that the low velocity absorption in the new STIS spectra of N IV 1718 and Si IV 1402 vary with the same 2.086 day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 years earlier. We also show that the time variability of the new XMM fluxes are also consistent with the 2.086 day period. Thus, our new, multi-wavelength coordinated observations demonstrate that the mechanism which causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multi-wavelength light curve minima is: Si IV 1402, N IV 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086 day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Further, the high resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blue shifted. If we interpret the low velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 deg, on the surface of the star. We note that the presence and persistent of two spots separated by 180 deg suggests that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per.Comment: 23 pages, 14 figure

    The IUE Mega Campaign. Modulated Structure in the Wind of HD 64760 (B0.5 Ib)

    Get PDF
    We highlight systematic variability in the stellar wind of the early B type supergiant, HD 64760, whose UV line profiles were monitored for almost 16 days in 1995 January as part of the IUE 'MEGA Campaign.' The extensive coverage reveals a pattern of rapidly evolving discrete optical depth changes which typically migrate from approx. - 200 km/s to approx. -1500 km/s in less than 12 hr. These features coexist with more slowly evolving structures lasting several days. Time-series analysis of the Si(IV), Si(III), and N(V) profile variations presents a clear 1.2 day periodicity, which is a quarter of the estimated maximum rotation period of HD 64760. The line profile changes are consistent with an interpretation in terms of a set of corotating wind features which occult the stellar disk at least 3 times during the observing run. These data are combined with UV observations collected in 1993 March to argue in favor of rotationally modulated wind variations in HD 64760. The basic result of very regular, large-scale optical depth variations points to a 'clock' whose origin is on the stellar surface, rather than a mechanism that is entirely intrinsic to the stellar wind

    Wind Variability of B Supergiants

    Get PDF
    We present the results of a 6 day time series of observations of the rapidly rotating B0.5 Ib star HD 64760. We point out several reasons why such intermediate luminosity B supergiants are ideal targets for wind variability studies and then present our results that show the following: continuous wind activity throughout the 6 day run with the wind never in steady state for more than a few hr; wind variability very near nu = 0 km sec(exp -1) in the resonance lines from the lower ionization stages (Al III and C II); a distinct correlation between variability in the Si III ; lambda(lambda)1300 triplets, the strong C III (lambda)1247 singlet, and the onset of extremely strong wind activity, suggesting a connection between photospheric and wind activity; long temporal coherence in the behavior of the strong absorption events; evidence for large-scale spatial coherence, implied by a whole scale, simultaneous weakening in the wind absorption over a wide range in velocities; and ionization variability in the wind accompanying the largest changes in the absorption strengths of the wind lines. In addition, modeling of the wind lines provides the following information about the state the wind in HD 64760. The number of structures on the portion of a constant velocity surface occulting the stellar disk at a particular time must be quite small, while the number on the entire constant velocity surface throughout the wind must be large. The escape probability at low velocity is overestimated by a normal beta approx. 1 velocity law, perhaps due to the presence of low-velocity shocks deep in the wind or a shallow velocity gradient at low velocity. Estimates of the ionization structure in the wind indicate that the ionization ratios are not those expected from thermal equilibrium wind models or from an extrapolation of previous O star results. The large observed q(N V)/q(Si IV) ratio is almost certainly due to distributed X-rays, but the level of ionization predicted by distributed X-ray wind models is inconsistent with the predicted mass-loss rate. Thus, it is impossible to reconcile the observed ionization ratios and the predicted mass-loss rate within the framework of the available models

    High spatial resolution monitoring of the activity of BA supergiant winds

    Get PDF
    There are currently two optical interferometry recombiners that can provide spectral resolutions better than 10000, AMBER/VLTI operating in the H-K bands, and VEGA/CHARA, recently commissioned, operating in the visible. These instruments are well suited to study the wind activity of the brightest AB supergiants in our vicinity, in lines such as Hα\alpha or BrGamma. We present here the first observations of this kind, performed on Rigel (B8Ia) and Deneb (A2Ia). Rigel was monitored by AMBER in two campaigns, in 2006-2007 and 2009-2010, and observed in 2009 by VEGA; whereas Deneb was monitored in 2008-2009 by VEGA. The extension of the Halpha and BrGamma line forming regions were accurately measured and compared with CMFGEN models of both stars. Moreover, clear signs of activity were observed in the differential visibility and phases. These pioneer observations are still limited, but show the path for a better understanding of the spatial structure and temporal evolution of localized ejections using optical interferometry.Comment: Proceedings of conf. IAUS272 - Active OB stars - Paris, July 19-23, 201

    Photometric study of selected cataclysmic variables

    Get PDF
    We present time-resolved photometry of five relatively poorly-studied cataclysmic variables: V1193 Ori, LQ Peg, LD 317, V795 Her, and MCT 2347-3144. The observations were made using four 1m-class telescopes for a total of more than 250 h of observation and almost 16,000 data points. For LQ Peg WHT spectroscopic data have been analysed as well. The light curves show a wide range of variability on different time scales from minutes to months. We detect for the first time a brightness variation of 0.05 mag in amplitude in V1193 Ori on the same timescale as the orbital period, which we interpret as the result of the irradiation of the secondary. A 20-min quasi-periodic oscillation is also detected. The mean brightness of the system has changed by 0.5 mag on a three-month interval, while the flickering was halved. In LQ Peg a 0.05 mag modulation was revealed with a period of about 3 h. The flickering was much smaller, of the order of 0.025 mag. A possible quasi-periodic oscillation could exist near 30 min. For this object, the WHT spectra are single-peaked and do not show any radial-velocity variations. The data of LD 317 show a decrease in the mean magnitude of the system. No periodic signal was detected but this is certainly attributable to the very large flickering observed: between 0.07 and 0.1 mag. For V795 Her, the 2.8-hour modulation, thought to be a superhump arising from the precession of the disc, is present. We show that this modulation is not stable in terms of periodicity, amplitude, and phase. Finally, for MCT 2347-3144, a clear modulation is seen in a first dataset obtained in October 2002. This modulation is absent in August 2003, when the system was brighter and showed much more flickering.Comment: 19 pages, 15 figures, 7 tables. Accepted for pubication by A&
    corecore