152 research outputs found
Long-Term Safety and Usefulness of Mexiletine in a Large Cohort of Patients Affected by Non-dystrophic Myotonias
Objective: The aim of our study was to evaluate the long-term efficacy and safety of mexiletine in 112 patients affected by genetically confirmed non-dystrophic myotonias. The study was performed at the Neurophysiologic Division of Fondazione Policlinico Universitario A. Gemelli Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome and the Children's Hospital Bambino GesĂą, Rome. Methods: The treatment was accepted by 59 patients according to clinical severity, individual needs, and concerns about a chronic medication. Forty-three patients were affected by recessive congenita myotonia, 11 by sodium channel myotonia, and five by dominant congenital myotonia. They underwent clinical examination before and after starting therapy, and Electromyography (EMG). A number of recessive myotonia patients underwent a protocol of repetitive nerve stimulations, for detecting and quantifying the transitory weakness, and a modified version of the Timed Up and Go test, to document and quantify the gait impairment. Results: Treatment duration ranged from 1 month to 20 years and the daily dosages in adults ranged between 200 and 600 mg. No patient developed cardiac arrhythmias causing drug discontinuation. Mexiletine was suspended in 13 cases (22%); in three patients, affected by Sodium Channel myotonia, because flecainide showed better efficacy; in one patient because of a gastric cancer antecedent treatment; in four patients because of untreatable dyspepsia; and five patients considered the treatment not necessary. Conclusions: In our experience, mexiletine is very useful and not expensive. We did not observe any hazarding cardiac arrhythmias. Dyspepsia was the most frequent dose-limiting side effect
Muscle pain in mitochondrial diseases: a picture from the Italian network
Muscle pain may be part of many neuromuscular disorders including myopathies, peripheral neuropathies and lower motor neuron diseases. Although it has been reported also in mitochondrial diseases (MD), no extensive studies in this group of diseases have been performed so far. We reviewed clinical data from 1398 patients affected with mitochondrial diseases listed in the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases", to assess muscle pain and its features. Muscle pain was present in 164 patients (11.7%). It was commonly observed in subjects with chronic progressive external ophthalmoplegia (cPEO) and with primary myopathy without cPEO, but also-although less frequently-in multisystem phenotypes such as MELAS, MERFF, Kearns Sayre syndrome, NARP, MNGIE and Leigh syndrome. Patients mainly complain of diffuse exercise-related muscle pain, but focal/multifocal and at rest myalgia were often also reported. Muscle pain was more commonly detected in patients with mitochondrial DNA mutations (67.8%) than with nuclear DNA changes (32.2%). Only 34% of the patients showed a good response to drug therapy. Interestingly, patients with nuclear DNA mutations tend to have a better therapeutic response than patients with mtDNA mutations. Muscle pain is present in a significant number of patients with MD, being one of the most common symptoms. Although patients with a myopathic phenotype are more prone to develop muscle pain, this is also observed in patients with a multi system involvement, representing an important and disabling symptom having poor response to current therapy
Enhanced chemotherapy for glioblastoma multiforme mediated by functionalized graphene quantum dots
Glioblastoma is the most aggressive and lethal brain cancer. Current treatments involve surgical resection, radiotherapy and chemotherapy. However, the life expectancy of patients with this disease remains short and chemotherapy leads to severe adverse effects. Furthermore, the presence of the blood-brain barrier (BBB) makes it difficult for drugs to effectively reach the brain. A promising strategy lies in the use of graphene quantum dots (GQDs), which are light-responsive graphene nanoparticles that have shown the capability of crossing the BBB. Here we investigate the effect of GQDs on U87 human glioblastoma cells and primary cortical neurons. Non-functionalized GQDs (NF-GQDs) demonstrated high biocompatibility, while dimethylformamide-functionalized GQDs (DMF-GQDs) showed a toxic effect on both cell lines. The combination of GQDs and the chemotherapeutic agent doxorubicin (Dox) was tested. GQDs exerted a synergistic increase in the efficacy of chemotherapy treatment, specifically on U87 cells. The mechanism underlying this synergy was investigated, and it was found that GQDs can alter membrane permeability in a manner dependent on the surface chemistry, facilitating the uptake of Dox inside U87 cells, but not on cortical neurons. Therefore, experimental evidence indicates that GQDs could be used in a combined therapy against brain cancer, strongly increasing the efficacy of chemotherapy and, at the same time, reducing its dose requirement along with its side effects, thereby improving the life quality of patients
Limb-Girdle Muscular Dystrophies (LGMDs): The Clinical Application of NGS Analysis, a Family Case Report
The diagnosis of LGMD2A (calpainopathy) can be challenging due to genetic heterogeneity and to high similarity with other LGMDs or neuromuscular disorders. In this setting, NGS panels are highly recommended to perform differential diagnosis, identify new causative mutations and enable genotype-phenotype correlations. In this manuscript, the case of a patient affected by LGMD2A is reported, for which the application of a defined custom designed NGS panel allowed to confirm the diagnosis of calpainopathy linked with two heterozygous variants in CAPN3, namely c.550delA and c.1813G>C. The first variant has been extensively described in relation to calpainopathy. The second variant c.1813G>C, instead, is novel and has been predicted to be probably damaging. In addition, NGS analysis on the proband revealed a heterozygous variant (c.550C>T) in the LMNA gene, which is associated with dilated cardiomyopathy. The variant is novel and has been predicted to be deleterious by subsequent bioinformatic analysis. Successively, segregation analysis was performed on family members. Interestingly, none of them showed neuromuscular symptoms but the mother was diagnosed with bradycardia and syncopal episodes and showed a positive family history for cardiomyopathy. The segregation analysis reported that the proband inherited the c.1813G>C (CAPN3) from the father who was a healthy carrier. The mother was positive for c.550delA (CAPN3) and c.550C>T (LMNA), suggesting thereby a possible genetic explanation for her cardiovascular problems. Segregation analysis, therefore, confirmed the inheritance pattern of the variants carried by the proband and highlighted a familiarity for cardiomyopathy which should not be neglected. The NGS analysis was further performed on the partner of the proband, to estimate the reproductive risk of the couple. The partner was negative to NGS screening, suggesting thereby a low risk to have an affected child with calpainopathy and 50% probability inherit the LMNA variant. This case report showed the clinical utility of the NGS panel in providing accurate LGMD2A diagnosis and identifying complex phenotypes originating from mutations in multiple genes. However, NGS results should always be accomplished by a dedicated genetic counseling, not only to evaluate the recurrence and reproductive risks but also to uncover unexpected findings which can be clinically significant
Amino acid profiles in older adults with frailty. Secondary analysis from MetaboFrail and BIOSPHERE studies
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS–DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS–DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery
Graphene quantum dots’ surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics
Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood–brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs’ surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs’ biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs
Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration.
OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy
- …