27 research outputs found

    Neutrino-antineutrino annihilation around collapsing star

    Get PDF
    Stellar collapse is accompanied by emission of E sub neutrino approximately 10 MeV neutrinos and antineutrinos with the energy output W sub neutrino approximately 10 to the 53rd power to 10 to the 54th power erg. Annihilation of these particles in the vicinity of collapsar is considered. The physical consequences are discussed

    Study of cosmic ray scintillations from 5-minute data of the scintillations telescope Izmran and world-wide network stations

    Get PDF
    During cosmic ray propagation in interplanetary space there appear characteristic cosmic-ray intensity scintillations which are due to charged particle scattering on random inhomogeneities of the interplanetary magnetic field. The power spectra of cosmic ray scintillations on the Earth during some intervals from 1977 to 1982 (for quiet periods, for solar flares and Forbush decreases due to power shock waves) have been calculated from five-minute, one and two-hour values of the cosmic-ray intensity measured by the scintillator supertelescope IZMIRAN. The spectra were estimated by the methods of spectral analysis and by autoregressive methods which mutually control each other and make it possible not only to analyze scintillation powers at distinguished frequencies, but also to determine the behavior of spectrum slopes in some frequency ranges

    The gamma-ray telescope Gamma-1

    Get PDF
    French and Soviet specialists have designed and built the gamma-ray telescope GAMMA-1 to detect cosmic gamma rays above 50 MeV. The sensitive area of the detector is 1400 sq cm, energy resolution is 30% at 300 MeV, and angular resolution 1.2 deg at 300 MeV (and less than 20' arc when a coded aperture mask is used). Results on calibration of the qualification model and Monte-Carlo calculations are presented

    Modeling psychiatric disorders: from genomic findings to cellular phenotypes

    Get PDF
    Major programs in psychiatric genetics have identified 4150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Space Reactor Arms Control: Overview

    Get PDF
    Unshielded nuclear reactors provide the lightest and most survivable long-lived sources of electric power available to support military satellites. Restricting their use now, before a new generation of larger space reactors is tested and deployed by the US and USSR, could help prevent an arms race in space. Space nuclear power systems have been used by the United States and the Soviet Union since the 1960s. The Soviet Union has used orbiting nuclear reactors to power more than 30 radar ocean reconnaissance satellites (RORSATs). Two RORSATs have accidentally re-entered and released their radioactivity into the environment, and a third, Cosmos 1900, narrowly avoided a similar fate. The United States is developing much more powerful space reactors, of which the SP-100 is farthest along, primarily to power satellite components of the Strategic Defense Initiative (SDI). A working group associated with the Federation of American Scientists (FAS) and the Committee of Soviet Scientists for Peace and Against the Nuclear Threat (CSS) has been studying a proposed ban on orbiting reactors. A proposal by the FAS/CSS group that includes such a ban is attached in the appendix to the Overview. The first five papers in this section, all by members of the working group, summarize the technological and historical background to nuclear power in space and show that restrictions on orbiting reactors are verifiable. The final paper, by Rosen and Schnyer of NASA, surveys the civilian uses of nuclear power in space. The overview is a nontechnical introduction to the issues of space reactor arms control, including the proposed ban on orbiting reactors
    corecore