715 research outputs found

    Ellagitannin-rich bioactive extracts of Tuberaria lignosa: insights into the radiation-induced effects in the recovery of high added-value compounds

    Get PDF
    Ellagitannins are polyphenols responsible for a number of bioactivities and health-promoting effects. These industrially important molecules can be affected by post-harvest treatments and recovery processes, but little is known about the irradiation-induced effects on their integrity, bioactivity and extractability. Herein, the impact of gamma radiation on the production of ellagitannin-rich extracts was investigated using Tuberaria lignosa as a case study. These effects were compared with those induced in flavonoids and organic acids. The extracts were particularly rich in hydrophilic antioxidants (measured by in vitro assays). The recovery of different phytochemicals was favoured by longer extraction times. Ellagitannins (mainly punicalagin derivatives) were extracted better from samples irradiated at 5 kGy and were not significantly affected by the 10 kGy dose. However, the total contents of flavonoids and organic acids were decreased by the consequent increase in irradiation dose. Therefore, this study supports the use of gamma radiation for processing T. lignosa, aiming to obtain ellagitannin-rich bioactive extracts.The authors are grateful to the PRODER research project no. 53514 AROMAP for financial support of the work; to the Foundation for Science and Technology (FCT) of Portugal and FEDER under Programme PT2020 for financial support to CIMO (UID/AGR/00690/2013); to FCT/MEC for financial support to REQUIMTE/LAQV (UID/QUI/50006/2013 - POCI/01/ 0145/FERDER/007265); to FCT for the grants attributed to J. Pinela (SFRH/BD/92994/2013; funded by the European Social Fund and MEC through Programa Operacional Capital Humano (POCH)) and L. Barros (SFRH/BPD/107855/2015); to the Xunta de Galicia for financial support to M. A. Prietoinfo:eu-repo/semantics/publishedVersio

    High-oxygen-barrier multilayer films based on polyhydroxyalkanoates and cellulose nanocrystals

    Get PDF
    This study reports on the development and characterization of organic recyclable high-oxygen-barrier multilayer films based on different commercial polyhydroxyalkanoate (PHA) materials, including a blend with commercial poly(butylene adipate-co-terephthalate) (PBAT), which contained an inner layer of cellulose nanocrystals (CNCs) and an electrospun hot-tack adhesive layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from cheese whey (CW). As a result, the full multilayer structures were made from bio-based and/or compostable materials. A characterization of the produced films was carried out in terms of morphological, optical, mechanical, and barrier properties with respect to water vapor, limonene, and oxygen. Results indicate that the multilayer films exhibited a good interlayer adhesion and contact transparency. The stiffness of the multilayers was generally improved upon incorporation of the CNC interlayer, whereas the enhanced elasticity of the blend was reduced to some extent in the multilayer with CNCs, but this was still much higher than for the neat PHAs. In terms of barrier properties, it was found that 1 µm of the CNC interlayer was able to reduce the oxygen permeance between 71% and 86%, while retaining the moisture and aroma barrier of the control materials.This research work was funded by the H2020 EU project YPACK (reference number 773872) and by the Spanish Ministry of Science and Innovation (MICI) project RTI2018-097249-B-C21.Beatriz Melendez-Rodriguez would like to acknowledge the MICI for her FPI fellowship (BES-2016-077972) and Sergio Torres-Giner for his MICI Juan de la Cierva–Incorporación contract (IJCI-2016-29675). The authors would also like to acknowledge the Unidad Asociada in Polymer Technology, joint unit IATA(CSIC)-UJI

    Gamma radiation-induced effects on the recovery of pharmacologically active polyphenols from tuberaria lignosa medicinal plant

    Get PDF
    Ionizing radiation has been used for many years as a safer and environmentally friendly alternative comparatively to chemical fumigants to decontaminate medicinal plants and other food commodities [1]. Perennial spotted rockrose (Tuberaria lignosa (Sweet) Samp.) is a highly quoted medicinal plant in the northeast region of Portugal rich in ellagitannin derivatives [2,3]. As polyphenols, these compounds play an important role in human nutrition and display several biological effects, including antioxidant, anti-inflammatory, antitumor, antibacterial, and anti-HIV replication activities [2-4]. However, little is known about the impact of ionizing radiation on the integrity and extractability of these high added-value compounds. This work aimed to investigate the effects of γ-rays irradiation on the extraction and/or degradation kinetics of ellagitannins from T. lignosa aerial parts. The plant material was submitted to irradiation doses up to 10 kGy in a cobalt-60 experimental chamber. Then, the non-irradiated and irradiated plant material was submitted to different solid-liquid extractions, according to a three-level full factorial design, using boiling water as extraction solvent. The ellagitannins were analyzed in a high-performance liquid chromatography (HPLC) system connected to a diode array detector (DAD) and a mass spectrometer (MS). Punicalin, punicalagin isomers, and punicalagin gallate isomers were the most abundant compounds. In general, the extractability of this group of phytochemicals was improved by the irradiation treatment (5 kGy) and longer extraction times (10 min). In addition, the 10 kGy dose did not induced adverse effects. In conclusion, this study demonstrated the suitability of γ-rays irradiation for preserving or improving the extractability of pharmacologically active compounds from T. lignosa aerial parts.The authors are grateful to the Foundation for Science and Technology (FCT) of Portugal and FEDER, under Programme PT2020, for financial support to CIMO (UID/AGR/00690/2013); to FCT/MEC for financial support to REQUIMTE/LAQV (UID/QUI/50006/2013 - POCI/01/0145/FEDER/007265); to FCT for the J. Pinela grant (SFRH/BD/92994/2013) and L. Barros contract; to the Xunta de Galicia for financial support to M. A. Prieto; C2TN (RECI/AAG-TEC/0400/2012 and UID/Multi/04349/2013 projects); International Atomic Energy Agency (IAEA - CRP D61024 - DEXAFI). The authors are also grateful to the Interreg España-Portugal for financial support through the Project 0377_Iberphenol_6_E.info:eu-repo/semantics/publishedVersio

    Valorização de produtos de montanha pela utilização de tecnologias de processamento não convencionais

    Get PDF
    Os vegetais embalados prontos a comer têm tido uma crescente aceitação por parte do consumidor por atenderem aos requisitos contemporâneos de conveniência, segurança e salubridade. O crescimento deste setor tem levado à introdução de novos produtos e à adoção de tecnologias de conservação mais eficientes, seguras e sustentáveis [1]. O consumidor procura também alimentos com características organoléticas diferenciadas das dos alimentos habitualmente consumidos diariamente. A recuperação do uso de Rumex induratus Boiss. & Reut. (azedas) e Nasturtium officinale R. Br. (agrião) poderá responder a esta procura, aliando garantia de qualidade e inovação. Visto a maioria dos tratamentos convencionais ser ineficaz em assegurar segurança sem comprometer a qualidade, e dada a preocupação em torno dos agentes químicos vulgarmente utilizados, a irradiação de alimentos e o embalamento em atmosfera modificada têm emergido como alternativas seguras e eficazes [1-4]. Neste sentido, este estudo teve como objetivo avaliar a eficácia de diferentes atmosferas de embalamento e de diferentes doses de radiação ionizante na conservação da qualidade destas espécies durante o armazenamento refrigerado. O uso sustentável de produtos vegetais para a recuperação de biomoléculas ou produção de ingredientes funcionais de valor acrescentado é uma estratégia útil que pode ajudar a enfrentar os desafios societais deste século. Atualmente é originada uma grande quantidade de resíduos de tomate (Lycopersicon esculentum Mill.) fresco durante as várias etapas do seu ciclo produtivo, desde a cultura até ao armazenamento e venda [5]. Estes resíduos são ricos em licopeno e vitaminas, mas também em compostos fenólicos [6,7]. Estes compostos bioativos estão envolvidos na prevenção de várias patologias humanas e são de elevada importância para a indústria alimentar, farmacêutica e cosmética. Visto os métodos convencionais utilizados para a extração destas biomoléculas apresentarem várias desvantagens, novas tecnologias mais eficientes e sustentáveis têm vindo a ser adotadas. Neste sentido, este trabalho teve como objetivo otimizar as condições de extração assistida por tecnologia micro-ondas de antioxidantes hidrofílicos e lipofílicos e dos ácidos fenólicos e flavonoides maioritários da variedade de tomate redondo utilizando a metodologia de superfície de resposta (RSM)

    Differential regulation of the muscle-specific GLUT4 enhancer in regenerating and adult skeletal muscle

    Get PDF
    We have reported a novel functional co-operation among MyoD, myocyte enhancer factor-2 (MEF2), and the thyroid hormone receptor in a muscle-specific enhancer of the rat GLUT4 gene in muscle cells. Here, we demonstrate that the muscle-specific enhancer of the GLUT4 gene operates in skeletal muscle and is muscle fiber-dependent and innervation-independent. Under normal conditions, both in soleus and in extensor digitorum longus muscles, the activity of the enhancer required the integrity of the MEF2-binding site. Cancellation of the binding site of thyroid hormone receptor enhanced its activity, suggesting an inhibitory role. Muscle regeneration of the soleus and extensor digitorum longus muscles caused a marked induction of GLUT4 and stimulation of the enhancer activity, which was independent of innervation. During muscle regeneration, the enhancer activity was markedly inhibited by cancellation of the binding sites of MEF2, MyoD, or thyroid hormone receptors. Different MEF2 isoforms expressed in skeletal muscle (MEF2A, MEF2C, and MEF2D) and all members of the MyoD family had the capacity to participate in the activity of the GLUT4 enhancer as assessed by transient transfection in cultured cells. Our data indicate that the GLUT4 enhancer operates in muscle fibers and its activity contributes to the differences in GLUT4 gene expression between oxidative and glycolytic muscle fibers and to the GLUT4 up-regulation that occurs during muscle regeneration. The activity of the enhancer is maintained in adult muscle by MEF2, whereas during regeneration the operation of the enhancer depends on MEF2, myogenic transcription factors of the MyoD family, and thyroid hormone receptors

    A novel LMNA mutation (R189W) in familial dilated cardiomyopathy: evidence for a 'hot spot' region at exon 3: a case report

    Get PDF
    We describe a case of a patient with idiopathic dilated cardiomyopathy and cardiac conduction abnormalities who presented a strong family history of sudden cardiac death. Genetic screening of lamin A/C gene revealed in proband the presence of a novel missense mutation (R189W), near the most prevalent lamin A/C mutation (R190W), suggesting a "hot spot" region at exon 3
    corecore