2,242 research outputs found

    Slow equivariant lump dynamics on the two sphere

    Full text link
    The low-energy, rotationally equivariant dynamics of n CP^1 lumps on S^2 is studied within the approximation of geodesic motion in the moduli space of static solutions. The volume and curvature properties of this moduli space are computed. By lifting the geodesic flow to the completion of an n-fold cover of the moduli space, a good understanding of nearly singular lump dynamics within this approximation is obtained.Comment: 12 pages, 3 figure

    A mathematical model for the sequestering of chemical contaminants by magnetic particles

    Get PDF
    A mathematical model is developed and implemented to characterize the pickup of various liquid chemical contaminants by polyethylene-coated magnetic particles. The model and its associated experimental and analytical protocols were applied to a wide range of liquid chemicals in order to gain insights into the physical basis for the pickup phenomenon. The characteristics of the pickup isotherms range between “ideal” and “nonideal” behaviors that are reflected in the mathematical model by a single parameter, �0, where �0=1 corresponds to ideal behavior and �0�1 corresponds to a departure from idealized behavior that is directly quantified by the magnitude of �0. The parameter �0 is also related to the efficiency of pickup, and since most isotherms observed in the study deviate from ideality, the high efficiency of pickup observed in these systems has been attributed in part to this deviation. The proposed model and its associated experimental and analytical protocols demonstrate great potential for the systematic evaluation of the uptake of chemical contaminants using magnetic particle technology

    Analyzing X-ray variability by State Space Models

    Get PDF
    In recent years, autoregressive models have had a profound impact on the description of astronomical time series as the observation of a stochastic process. These methods have advantages compared with common Fourier techniques concerning their inherent stationarity and physical background. If autoregressive models are used, however, it has to be taken into account that real data always contain observational noise often obscuring the intrinsic time series of the object. We apply the technique of a Linear State Space Model which explicitly models the noise of astronomical data and allows to estimate the hidden autoregressive process. As an example, we have analysed a sample of Active Galactic Nuclei (AGN) observed with EXOSAT and found evidence for a relationship between the relaxation timescale and the spectral hardness.Comment: 4 pages, Latex, uses Kluwer Style file crckapb.cls To appear in Proc. of Astronomical Time Series, Tel Aviv, 199

    Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene

    Full text link
    The glass transition temperature and relaxation dynamics of the segmental motions of thin films of polystyrene labeled with a dye, 4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are investigated using dielectric measurements. The dielectric relaxation strength of the DR1-labeled polystyrene is approximately 65 times larger than that of the unlabeled polystyrene above the glass transition, while there is almost no difference between them below the glass transition. The glass transition temperature of the DR1-labeled polystyrene can be determined as a crossover temperature at which the temperature coefficient of the electric capacitance changes from the value of the glassy state to that of the liquid state. The glass transition temperature of the DR1-labeled polystyrene decreases with decreasing film thickness in a reasonably similar manner to that of the unlabeled polystyrene thin films. The dielectric relaxation spectrum of the DR1-labeled polystyrene is also investigated. As thickness decreases, the α\alpha-relaxation time becomes smaller and the distribution of the α\alpha-relaxation times becomes broader. These results show that thin films of DR1-labeled polystyrene are a suitable system for investigating confinement effects of the glass transition dynamics using dielectric relaxation spectroscopy.Comment: 10 pages, 11 figures, 2 Table

    Omega-3 Fatty Acids Improve Recovery, whereas Omega-6 Fatty Acids Worsen Outcome, after Spinal Cord Injury in the Adult Rat

    Get PDF
    Spinal cord injury (SCI) is a cause of major neurological disability, and no satisfactory treatment is currently available. Evidence suggests that polyunsaturated fatty acids (PUFAs) could target some of the pathological mechanisms that underlie damage after SCI. We examined the effects of treatment with PUFAs after lateral spinal cord hemisection in the rat. The ω-3 PUFAs α-linolenic acid and docosahexaenoic acid (DHA) injected 30 min after injury induced significantly improved locomotor performance and neuroprotection, including decreased lesion size and apoptosis and increased neuronal and oligodendrocyte survival. Evidence showing a decrease in RNA/DNA oxidation suggests that the neuroprotective effect of ω-3 PUFAs involved a significant antioxidant function. In contrast, animals treated with arachidonic acid, an ω-6 PUFA, had a significantly worse outcome than controls. We confirmed the neuroprotective effect of ω-3 PUFAs by examining the effects of DHA treatment after spinal cord compression injury. Results indicated that DHA administered 30 min after spinal cord compression not only greatly increased survival of neurons but also resulted in significantly better locomotor performance for up to 6 weeks after injury. This report shows a striking difference in efficacy between the effects of treatment with ω-3 and ω-6 PUFAs on the outcome of SCI, with ω-3 PUFAs being neuroprotective and ω-6 PUFAs having a damaging effect. Given the proven clinical safety of ω-3 PUFAs, our observations show that these PUFAs have significant therapeutic potential in SCI. In contrast, the use of preparations enriched in ω-6 PUFAs after injury could worsen outcome after SCI

    School-based curriculum development in Scotland: Curriculum policy and enactment

    Get PDF
    Recent worldwide trends in curriculum policy have re-emphasised the role of teachers in school-based curriculum development. Scotland’s Curriculum for Excellence is typical of these trends, stressing that teachers are agents of change. This paper draws upon empirical data to explore school-based curriculum development in response to Curriculum for Excellence. We focus on two case studies – secondary schools within a single Scottish local education authority. In the paper we argue that the nature and extent of innovation in schools is dependent upon teachers being able to make sense of often complex and confusing curriculum policy, including the articulation of a clear vision about what such policy means for education within each school

    Using a prisoner advisory group to develop diversity research in a maximum-security prison

    Get PDF
    This paper addresses groupwork processes with a group of prisoners advising a research project in a maximum-security prison in England. The research project (Appreciative Inquiry into the Diversity Strategy of HMP Wakefield. RES-000-22-3441) was funded by the Economic and Social Research Council (ESRC) and lasted 9 months. The research explored the experiences of prisoners in diverse minority groupings and the strategies of the prison to accommodate the complex needs of these groups. The Prisoner Advisory Group (PAG) was made up of representatives from Black and Minority Ethnic (BME) prisoners; older prisoners (over 60s); Disabled prisoners (with physical disabilities, learning difficulties; and mental health problems); Gay, Bi-sexual and Transgender prisoners; and prisoners affiliated to Faith groups. It met regularly during the research. The paper considers the forming norming and performing aspects of establishing an effective participant voice in a prison-based project. It considers the contribution of the PAG to developing a research strategy that engaged prisoners in the research. It reflects on the nature of ‘participative research’ in general and whether such research is possible within a high-security prison environment

    Constraining early-time dust formation in core-collapse supernovae

    Get PDF
    There is currently a severe discrepancy between theoretical models of dust formation in core-collapse supernovae (CCSNe), which predict 0.01\gtrsim 0.01 M_\odot of ejecta dust forming within 1000\sim 1000 days, and observations at these epochs, which infer much lower masses. We demonstrate that, in the optically thin case, these low dust masses are robust despite significant observational and model uncertainties. For a sample of 11 well-observed CCSNe, no plausible model reaches carbon dust masses above 10410^{-4} M_\odot, or silicate masses above 103\sim 10^{-3} M_\odot. Optically thick models can accommodate larger dust masses, but the dust must be clumped and have a low (<0.1<0.1) covering fraction to avoid conflict with data at optical wavelengths. These values are insufficient to reproduce the observed infrared fluxes, and the required covering fraction varies not only between SNe but between epochs for the same object. The difficulty in reconciling large dust masses with early-time observations of CCSNe, combined with well-established detections of comparably large dust masses in supernova remnants, suggests that a mechanism for late-time dust formation is necessary.Comment: 14 pages, 13 figures. MNRAS accepted 10/07/2
    corecore