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Synopsis 

 

A mathematical model is developed and implemented to characterize the pick-up of 

various liquid chemical contaminants by polyethylene-coated magnetic particles.  The 

model and its associated experimental and analytical protocols were applied to a wide 

range of liquid chemicals in order to gain insights into the physical basis for the pick-

up phenomenon.  The characteristics of the pick-up isotherms range between "ideal" 

and "non-ideal" behavior that are reflected in the mathematical model by a single 

parameter, α0, where α0 = 1 corresponds to ideal behavior and α0 > 1 corresponds to 

a departure from idealized behavior that is directly quantified by the magnitude of α0.  

The parameter α0 is also related to the efficiency of pick-up and since the vast 

majority of isotherms observed in the study deviate from ideality, the high efficiency 

of pick-up observed in these systems has been attributed in part to this deviation.  The 

proposed model and its associated experimental and analytical protocols demonstrate 

great potential for the systematic evaluation of the uptake of chemical contaminants 

using magnetic particle technology. 
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Introduction 

 

The application of magnetic particle technology to environmental remediation has 

attracted much interest in the literature over the years.  Examples of this include the 

“Sirofloc” process for water clarification and decolourisation (Anderson et al. 1983; 

Priestly 1990; Booker et al. 1991) and functional magnetic particles that are used in 

the removal of pesticides from water (Lawruk et al. 1993).  Magnetic particles have 

also been used in areas such as the magnetic separation of cancer cells (Wang et al., 

1993), in diagnosis (Nakamura and Matsunaga 1993), separation of radioactive 

materials (Nunez et al. 1996) and as catalyst supports (Wang et al. 2000). 

 

It has also been found that polymer-coated magnetic particles can remove up to 90% 

of a standard grade of engine oil (Orbell et al. 1997) and that particles of uncoated 

iron powder are almost 100% effective in the magnetic harvesting of various 

contaminants (Orbell et al. 1999).  Magnetite and maghemite particles have also been 

reported to exhibit high removal efficiency for dispersants and oils (Chun and Park 

2001). 

 

A sequence of detailed studies on iron powder as an efficient medium for the 

magnetic removal of oil contamination in environmental applications has appeared in 

the literature.  These include: its use to remove contamination from oiled feathers 

(Orbell et al. 2004; Dao et al. 2006a), studies on the acute temperature dependence 

and thermodynamics of the pick-up process (Orbell et al. 2005; Dao et al. 2006b), the 

effect of pre-conditioners used in conjunction with iron powder for the removal of 

tarry and weathered oil (Dao et al. 2006c; Orbell et al. 2007) and its potential use to 

remove oil contamination from the surface of rock (Orbell et al. 2007). 

 

In the investigations of oil pick-up and the pick-up of other chemical contaminants 

using either polymer-coated magnetic particles such as polyethylene-coated and 

poly(vinylchloride)-coated magnetic particles or iron powder, the percentage of 

chemical contaminant harvested by the particles, P, versus the particle-to-chemical 

ratio, R, is typically plotted for a given system (Orbell et al. 1997).  Plots such as 

these characteristically increase from the origin and reach a plateau at the point (Pc, 
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Rc) whose respective coordinates correspond to the critical values of P and R at which 

the plateau is attained.  Through observations made on many different systems it has 

been found that the approach to the plateau sometimes exhibits "ideal" behavior in 

that the pick-up isotherm is almost linear.  An example is the pick-up of triethylamine 

with polyethylene-coated magnetic particles that demonstrates an almost linear 

relationship between the P and R parameters up to the plateau (Ngeh 2002).  On the 

other hand, the isotherm for the pick-up of bromobenzene with the same type of 

particles demonstrates a significant departure from linearity and, as such, can be 

classified as an example of a “non-ideal” system (Ngeh 2002).  Other variations in the 

behavior of the isotherm have been observed such as the high rate of approach to the 

plateau exhibited in the case of the pick-up of iodobenzene by polyethylene-coated 

magnetic particles (Ngeh 2002). 

 

In order to better understand the physical basis for the pick-up phenomenon a physical 

model together with the accompanying mathematical description was developed to fit 

the full range of experimental data obtained.  The model is described in this paper and 

its applicability to a number of different systems of wide variability is demonstrated. 

 

Theory 

 

In an "ideal" system each particle picks up a fixed quantity of chemical, and so upon 

the addition of successive particles, a linear increase is expected in the total amount of 

chemical that is picked up.  Under these conditions the value of P is expected to vary 

linearly with R up to the critical or "saturation" value Pc, whose corresponding value 

of R is denoted Rc.  The saturated region where no more chemical can be adsorbed 

occurs at values of R ≥ Rc.  

 

For "non-ideal" systems, each particle usually picks up an amount of chemical that is 

disproportionately larger than that expected in the ideal case.  The amount that is 

picked up also depends on the number of particles that are added to the system.  

Under these conditions the value of P varies non-linearly with R up to the critical 



S. W. Bigger et al., "A Mathematical Model for the Sequestering of . . . ", cont’d. 
 
 

4 

value Pc.  Hence a convex curvature of the isotherm compared with the ideal case is 

observed.  Again, values of R ≥ Rc define the saturated region. 

 

The adsorption of a chemical on magnetic particles such as iron particulates or 

polymer-coated magnetic particles can be mathematically modeled by considering the 

amount of chemical each particle can adsorb in the presence of other particles.  Now, 

the particle-to-chemical ratio, R, is given by equation (1): 

 

 R = nm1/m2 (1) 

 

where n is the number of particles, m1 is the average mass of one particle, and m2 is 

the mass of chemical used in the experiment (Orbell et al. 1997).  At the critical 

particle-to-chemical ratio, Rc, equation (2) applies: 

 

 Rc = ncm1/m2 (2) 

 

where nc is the critical number of particles that are responsible for the critical 

(maximum) percentage adsorption, Pc.  The average mass of chemical, ms, that is 

adsorbed by a single particle can be calculated from equation (3): 

 

 ms = Pcm2/(100nc) (3) 

 

Substituting equation (2) in equation (3) yields an expression for ms in terms of values 

Pc, m1 and Rc that are convenient to determine experimentally: 

 

 ms = Pcm1/(100Rc) (4) 

 

Upon the step-wise addition of up to nc particles in an "ideal" system, each particle 

adsorbs an amount of chemical equal to ms and the percentage adsorption, P(n), after 

the addition of n particles is given by equation (5) for n in the range 0 ≤ n ≤ nc: 
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 P(n) = (nms/m2) × 100 (5) 

 

Under these conditions the value of P(n) varies linearly with n up to the critical value 

Pc that corresponds to nc.  Using equations (1), (4) and (5), the simple function P(R) 

can be confirmed for values of R in the range 0 ≤ R ≤ Rc: 

 

 P(R) = RPc/Rc (6) 

 

In many real systems, the viscous nature of the liquid chemical to be adsorbed as well 

as the complex surface interactions between the liquid and the particles means that 

disproportionately larger amounts of the liquid adhere to the particles at lower values 

of R compared with values of R close to Rc.  Alternatively, it is possible that for 

organic compounds at low values of R, the particles can absorb the maximum amount 

of the compound, but at high values of R, some organic molecules can interact with 

two or more particles resulting in the observed deviation of the plot from the straight 

line.  Clearly, the possible interaction with two or more particles is related to the 

chemical nature of the contaminant.  If the contaminant is an organic compound it is 

anticipated that it would need to have two or more functional groups to interact 

simultaneously with several particles. 

 

The capacity of the particles to adsorb an excess loading of chemical in the early 

stages of the adsorption isotherm can be modeled by introducing a parameter α(n) 

which is the fractional excess of chemical a particle can adsorb in the presence of n 

particles.  The value of α(n) may be generated by an empirical function and depends 

on the number of particles present at any point in the adsorption process.  In "non-

ideal" cases, the percentage adsorption, P(n), is thus given by equation (7): 

 

 P(n) = (Mn/m2) × 100 (7) 

 

where Mn is the mass of chemical adsorbed by n particles in a "non-ideal" system.  

The value of Mn may be related to α(n) as shown in equation (8) and can be 

calculated by an iterative process for values of n in the range 1 ≤ n ≤ nc: 
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 Mn = Mn-1 + Ms(n)α(n) (8) 

 

where M0 is zero, Mn-1 is the mass of chemical adsorbed by n – 1 particles, and Ms(n) 

is the average mass of chemical adsorbed by the nth particle in the presence of n – 1 

particles which is iteratively adjusted to account for disproportionate adsorption.  In 

particular: 

 

 Ms(n) = [(Pcm2/100) – Mn-1]/(nc – n)  where M0 = 0 (9) 

 

A satisfactory fit of the experimental data can be obtained by assuming that the 

empirical function, α(n) varies linearly with n, and that the boundary conditions of 

(α, n) are (α0, 1) and (1, nc).  Under these conditions equation (10) can be readily 

derived: 

 

 α(n) = α0 + (α0 – 1)(n – 1)/(1 – nc) (10) 

 

An optimum value of α0 necessary to fit a given set of experimental data can be found 

by minimizing the sum of the squares of the residuals, s(α0), in accordance with 

equation (11): 

 
  n 
 s(α0) = Σ [P(Ri, α0) – P(Ri)]2 (11) 
 i=1 
 

where P(Ri, α0) is the theoretical value of P(Ri) calculated for a particular value of  

α0 and P(Ri) is the experimental value of the percentage adsorption determined at the 

particle-to-chemical ratio, Ri. 
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Materials and Methods 

 

Polyethylene (PE) powder (grade 4612-05A) was obtained from Courtney Polymers 

Ltd., Dandenong, Australia.  Steel "isoshot" pellets (grade S330, average particle size 

1.0 mm) were kindly provided by Barton Abrasive Ltd., West Midlands, United 

Kingdom.  All chemicals used in the experiments were AR grade reagents obtained 

from Aldrich Chemical Company Inc., Castle Hill, Australia. 

 

The manufacture of PE-coated "isoshot" magnetic particles was conducted using a 

procedure involving the high-temperature heating of the pellets in a muffle furnace at 

650°C and subsequent scattering of the particles in a fluidized bed of the polymer.  

The procedure is described elsewhere in detail (Orbell et al. 1997; Ngeh 2002) and it 

produces mechanically stable particles of average diameter ca. 1.2 ± 0.2 mm.  Two 

hundred PE-coated particles were weighed and the average mass for a single particle 

was found to be 0.0820 g. 

 

The chemical pick-up experiments were performed gravimetrically (Orbell et al. 

1997; Ngeh 2002) at 20°C using a fixed mass (1.00 g) of chemical that was placed in 

a pre-weighed (w1) Petri dish, which was then re-weighed (w2).  The PE-coated 

particles were applied to the chemical and the Petri dish was again re-weighed (w3).  

The particle/chemical mixture was left in the Petri dish for 5 min after which the 

chemical-laden particles were harvested magnetically using a laboratory magnetic 

tester (Alpha Magnetics, Victoria, Australia).  The Petri dish was then re-weighed 

(w4).  These measurements enable experimental values of R and P to be calculated 

from equations (12) and (13) respectively (Orbell et al. 1997; Ngeh 2002): 

 

 R = (w3 – w2)/(w2 – w1) (12) 

 

 P = [(w2 – w4)/(w2 – w1)] × 100 (13) 
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The procedure was repeated in batches for increasing values of R until a maximum 

value of P was achieved (i.e. Pc), for a maximum value of Rc.  The above procedure 

was carried out with five replicates in all subsequent experiments. 

 

The experimental P and R data obtained for the affinity of a chemical compound for 

the magnetic particles were entered into an original computer program that was 

specifically written to analyze the data.  The program determines the value of α0 

associated with the optimum fit to the experimental data.  

 

 

Results and Discussion 

 

Fitting Experimental Data to Theoretical Model 

 

The derived mathematical model that is depicted by equation (1) together with 

equations (7) to (10) were used within an iterative computer program that generated 

the theoretical curves P(R) for given values of the adjustable parameter, α0.  These 

plots appear in Fig. 1 and show that for an ideal system where α0 = 1, a linear 

relationship between P(R) and R is established as expected.  However, for non-ideal 

systems where α0 > 1, there is an increase in the curvature of the isotherm as the 

value of α0 increases.  Thus when α0 = 1, idealized adsorption occurs and values of 

α0 that are successively greater than unity indicate successively greater departure 

from idealized adsorption behaviour. 

 

>>> Insert Figure 1 

 

Shown in Fig. 2 are experimental data for the pick-up of triethylamine and m-

dichlorobenzene at 20°C using PE-coated magnetic particles.  In each case the data 

were fitted using the iterative computer program and the solid lines represent the 

computer-generated optimum fits to the data.  The triethylamine data (α0 = 1.70 in 

Table 1) display behaviour that is nearly ideal for which the value of α0 is closer to 

unity relative to all of the other systems examined in the present study.  In the initial 
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stages of the triethylamine isotherm each particle picks up nearly the same amount of 

chemical resulting in an almost linear increase of the isotherm.  On the other hand, the 

m-dichlorobenzene (α0 = 3.57 in Table 1) data show a marked departure from 

linearity and so this system can be classified as non-ideal.  For m-dichlorobenzene in 

the initial stages of the isotherm, excess compound is picked up by particles resulting 

in a convex curvature of the isotherm.  In the later stages, both the triethylamine and 

m-dichlorobenzene isotherms appear to plateau.  This is due to the ultimate saturation 

of the particles by the compounds. 

 

>>> Insert Figure 2 

 

Other compounds show a varying degree of departure from ideality as reflected by 

their values of α0.  The computer fitting procedure was applied to the experimental 

data collected for a variety of compounds.  Values of α0 for these compounds are 

listed in Table 1. 

 

>>> Insert Table 1 

 

Efficiency of Chemical Pick-Up 

 

The data analysis can be extended to determine the efficiency of a given system for 

the pick-up of a chemical contaminant.  This can be achieved using either of two 

approaches.  The first method involves using an efficiency parameter, E1, which may 

be defined as the initial gradient of the pick-up isotherm, (dP/dR)0, an approximation 

for which is given in equation (14): 

 

 E1 = (dP/dR)0 ≈ (ΔP/ΔR) ≈ P1/R1 (14) 

 

where P1 and R1 are the respective initial values of P and R that lie on the pick-up 

isotherm.  Clearly, this estimation of efficiency is an "average" estimated value for the 

initial part of the isotherm where R << Rc. 

 



S. W. Bigger et al., "A Mathematical Model for the Sequestering of . . . ", cont’d. 
 
 

10 

The second method involves mathematically deriving the initial gradient of the 

adsorption isotherm that represents the theoretical amount of chemical picked up by 

one infinitesimally small particle.  Equation (15) can be derived from equations (8), 

(9) and (10): 

 

 dMn/dn = Msα0/(1 – nc) – αPcM2ln(nc – n)/100 + αMn-1ln(nc – n) (15) 

 

For n = 1, M0 = 0, Ms = PcM2/[100(nc – 1)], α = α0 and so: 

 

 (dMn/dn)n=1 = [α0PcM2/100)[1/(nc – 1) + ln(nc – 1)]       (16) 

 

Since nc >> 1 then equation (17) applies: 

 

 (dMn/dn)n=1 ≈ α0PcM2ln(nc)/100 (17) 

 

Thus equation (17) suggests that the initial gradient of the adsorption isotherm is 

proportional to α0 and so α0 is related to the adsorption efficiency. 

 

Upon consideration of both the efficiency of pick-up and the extent to which a system 

behaves ideally, it is clear that a given system can be classified according to one of 

the following four types: (i) high efficiency and ideal, (ii) high efficiency and non-

ideal, (iii) low efficiency and ideal, and (iv) low efficiency and non-ideal.  From the 

range of chemical/polymer systems examined in the present study, the lowest value of 

Rc that was determined is ca. 3.0.  Given that the maximum theoretical value of Pc is 

100%, an average value of the efficiency parameter E1 for all of these systems is thus 

estimated E1(av) ≈ Pc/Rc = 33.3.  On this basis a distinction can be made between 

"high efficiency and ideal" and "low efficiency and ideal" classifications at E1 ≈ 33.  

Similarly, the maximum observed value of α0 is ca. 3 and so it is reasonable to 

propose that for many systems α0 values typically lie in the following range: 1 ≤ α0 ≤ 

3.  This enables a distinction to be made between "high efficiency and ideal" and 

"high efficiency and non-ideal" classifications at α0 ≈ 2.  The E1 and α0 data for the 
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systems listed in Table 1 suggest that these systems belong mainly to the "high 

efficiency and ideal" or "high efficiency and non-ideal" classifications. 

 

Shown in Fig. 3 is a plot of α0 versus the efficiency parameter E1 that pertains to the 

systems given in Table 1.  The reasonable degree of linearity of this plot together with 

its vertical axis intercept close to unity confirms that the α0 parameter is directly 

related to the efficiency of pick-up as indicated by equation (17).  Moreover, the 

correspondence between the two variables is consistent with the notion that the high 

efficiency pick-up systems tend to be those that exhibit a more significant departure 

from ideality as reflected by their values of the α0 parameter.  As the outlying data in 

Fig. 3 tend to belong predominantly to non-ideal systems, a departure from linearity 

would therefore be expected for systems where α0 >> 3.  Under these conditions E1 

would be expected to be a less reliable estimate of the overall efficiency of pick-up of 

the system. 

 

>>> Insert Figure 3 

 

It is expected that the pick-up characteristics of the systems will be primarily 

dependent on both the viscosity (η) and the surface tension (γ) of the liquid chemical 

as well as the extent of interaction between the chemical and substrate, and the 

particle size distribution and/or surface area.  Although the dependency of α0 on η 

and α0 on γ  (data given in Table 1) each shows an overall upward trend with a low 

level of correlation, no firm conclusions can be drawn.  This suggests that these 

dependencies are complex ones that require further investigation.  Nonetheless, this 

observation also supports the appropriateness of the mathematical modeling approach 

used in this study as a pragmatic and systematic way to characterize and assess the 

pick-up of chemical substances with magnetic particles. 
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Conclusions 

 

A mathematical model has been successfully developed and implemented using a 

computer program in order to characterize the pick-up of various liquid chemical 

contaminants by polymer-coated magnetic particles.  Using the model it has been 

demonstrated that the characteristics of the pick-up isotherms range between two 

extremes, represented by "ideal" and "non-ideal" behavior.  A further dimension to 

each of these classifications is the efficiency with which a given chemical is picked-

up with a given magnetic particle system.  The efficiency can be defined as the initial 

gradient of the pick-up isotherm that, in turn, is shown to be proportional to the α0 

parameter.  The use of a wide range of different chemicals has revealed that nearly all 

of the isotherms deviate from the ideal case and that PE-coated magnetic particles are 

highly efficient in the pick-up of these chemicals.  The observed high efficiency of 

pick-up can be attributed in part to the departure from ideality that these systems 

exhibit. 

 

Acknowledgement 
 
The authors are grateful to Mrs. Elizabeth Bigger for her assistance with some of the 
computer calculations in this work. 
 
 
References 
 
Anderson, N. J., and Priestley, A. J. (1983).  "Colour and turbidity removal with 
reusable magnetic particles - V."  Water Resour., 17(10), 1227-1233. 
 
Booker, N. A., Keir, D., Priestley, A. J., Ritchie, C. B., Sudarmana, D. L., and Woods, 
M. A. (1991).  "Sewage clarification with magnetite particles."  Water Sci. Technol., 
23, 1703 -1712. 
 
Chun, C. L., and Park, J. W. (2001). "Oil spill remediation using magnetic 
separation.”  J. Envir. Eng., 127(5), 443-449. 
 
Dao, H. V., Ngeh, L. N., Bigger, S. W., and Orbell, J. D. (2006a).  "The achievement 
of 100% removal of oil from feathers employing magnetic particle technology."  J. 
Env. Eng., 132, 555-559. 
 
Dao, H. V., Maher, L. A., Ngeh, L. N., Bigger, S. W., Orbell, J. D., Healy, M., Jessop, 
R., and Dann, P. (2006b).  "Removal of petroleum tar from bird feathers utilizing 
magnetic particles."  Environ. Chem. Lett., 4, 111-113. 



S. W. Bigger et al., "A Mathematical Model for the Sequestering of . . . ", cont’d. 
 
 

13 

 
Dao, H. V., Ngeh, L. N., Bigger, S. W., Orbell, J. D., Healy, M., Jessop, R., and 
Dann, P. (2006c).  "Magnetic cleansing of weathered/tarry oiled feathers – the role of 
pre-conditioners."  Marine Poll. Bull., 52, 1591-1594. 
 
Dean, J. A., Ed. (1992). "Lange’s handbook of chemistry." 14th edition, McGraw-Hill 
Inc., New York, USA. 
 
Lawruk, T. S., Lachman, C. E., Jourdan, S. W., Fleeker, J. R., Herzog, D. P., and 
Rubio, F. M. (1993).  "Determination of metolachlor in water and soil by a rapid 
magnetic particle-based ELISA."  J. Agric. Food Chem., 41 (9), 1426-1431. 
 
Nakamura N., and Matsunaga, T. (1993).  "Highly sensitive detection of allergen 
using bacterial magnetic particles."  Anal. Chim. Acta, 281(3), 585-598. 
 
Ngeh, L. N. (2002).  "The development of magnetic particle technology for 
application to environmental remediation."  PhD Thesis, Victoria University, 
Melbourne, Australia. 
 
Nunez, L., Buchholz, M., Kaminski, M., Aase, S. B., Brown, N. R., and Vandegrift, 
G. F. (1996).  "Actinide separation of high-level waste using solvent extractions on 
magnetic microparticles."  Sep. Sci. Technol., 31(10), 1393-1407. 
 
Orbell, J.D., Godhino, L., Bigger, S. W., Nguyen, T. M., and Ngeh, L. N. (1997).  
"Oil spill remediation using magnetic particles – an experiment in environmental 
technology."  J. Chem. Educ., 74, 1446-1448. 
 
Orbell, J. D., Tan, E. K., Coutts, M., Bigger, S. W., and Ngeh, L. N. (1999).  
"Cleansing oiled feathers – magnetically."  Marine Poll. Bull., 38, 219-221. 
 
Orbell, J. D., Ngeh, L. N., Bigger, S. W., Zabinskas, M., Zheng, M., Healy, M., 
Jessop, R., and Dann, P. (2004).  "Whole-bird models for the magnetic cleansing of 
oiled feathers."  Marine Poll. Bull., 48, 336-340. 
 
Orbell, J. D., Dao, H. V., Ngeh, L. N., Bigger, S. W., Healy, M., Jessop, R., and 
Dann, P. (2005).  "Acute temperature dependency in the cleansing of tarry feathers 
utilizing magnetic particles."  Environ. Chem. Lett., 3, 25-27. 
 
Orbell, J. D., Dao, H. V., Ngeh, L. N., and Bigger, S. W. (2007a).  "Magnetic particle 
technology in environmental remediation and wildlife rehabilitation."  
Environmentalist, 27, 175-192. 
 
Orbell, J. D., Dao, H. V., Kapadia, J., Ngeh, L. N., Bigger, S. W., Healy, M., Jessop, 
R., and Dann, P. (2007b).  "An investigation into the removal of oil from rock 
utilizing magnetic particle technology."  Marine Poll. Bull., 54, 1958-1961. 
 
Priestley, A. J. (1990).  "Sewage treatment using magnetite particles."  Water and 
Wastewater Int. 5, 32-33. 
 



S. W. Bigger et al., "A Mathematical Model for the Sequestering of . . . ", cont’d. 
 
 

14 

Wang, S. Y., Makl, K. L., Chen, L. Y., Tzeng, C. H., Hu, C. P., and Chang, C. M. 
(1993).  "Elimination of malignant tumor cells from human bone marrow using 
monoclonal antibodies and immunomagnetic beads."  Anticancer Res., 13 (6A), 2281-
2285. 
 
Wang L., Feng, L. X., and Xie, T. (2000). "Novel magnetic polyethylene 
nanocomposites produced by supported nanometer magnetic Ziegler-Natta catalyst."  
Polym. Int., 49(2), 184-188. 
 
Weast, R. C., Ed. (1998-1999). "CRC handbook of chemistry and physics."  78th 
edition, CRC Press, Baton Rouge, USA. 



S. W. Bigger et al., "A Mathematical Model for the Sequestering of . . . ", cont’d. 
 
 

15 

 

Table 1.  Experimentally determined values of the parameters Pc, Rc, E1 = (dP/dR)0 

and α0 for the pick up of a range of chemicals with PE-coated magnetic particles 

together with corresponding values of the viscosity, η, and surface tension, γ, of the 

chemicals. 

 

 

Chemical 

 

 

Pc/% 

 

Rc 

 

E1 

 
α0 

 

benzene 

bromobenzene 

chlorobenzene 

cyclohexane 

ethylbenzene 

iodobenzene 

m-dichlorobenzene 

m-xylene 

pentan-2-one 

triethylamine 

 

98.3 

94.0 

96.5 

94.9 

93.7 

88.5 

96.8 

90.5 

95.2 

97.0 

 

 

3.4 

3.5 

3.1 

3.7 

4.1 

3.8 

3.5 

3.8 

5.0 

5.6 

 

 

64.5 

44.8 

60.4 

42.7 

42.6 

54.6 

64.0 

35.9 

36.4 

30.2 

 

 

3.13 

2.26 

2.84 

2.45 

2.44 

3.33 

3.57 

1.92 

2.41 

1.70 
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Glossary of Symbols 
 
α(n) fractional excess of chemical that a magnetic particle can adsorb in the 

presence of n particles 
 
α0 boundary value of the parameter α(n) corresponding to the theoretical 

case where n = 0; magnitude of α0 quantifies extent to which a given 
system deviates from ideal case for which α0 = 1 

 
E1 arbitrarily defined efficiency of pick-up parameter 
 
m1 average mass (g) of one magnetic particle 
 
m2 mass (g) of chemical contaminant 
 
Mn mass (g) of chemical adsorbed by n particles in a "non-ideal" system 
 
Mn-1 mass of chemical contaminant adsorbed by n – 1 particles 
 
ms average mass of chemical adsorbed by a single magnetic particle 
 
Ms(n) average mass of chemical contaminant adsorbed by the nth particle in 

presence of n – 1 particles, iteratively adjusted to account for 
disproportionate adsorption 

 
n number of magnetic particles 
 
nc critical number of particles responsible for critical (maximum) percentage 

adsorption, Pc 
 
P percentage (w/w%) of chemical harvested by magnetic particles 
 
P(n) percentage adsorption after addition of n particles where 0 ≤ n ≤ nc 
 
P(Ri, α0) theoretical value of P(Ri) calculated for a particular value of α0 
 
P(Ri) experimental value of the percentage adsorption determined at the 

particle-to-chemical ratio, Ri 
 
P1 initial value of P on the experimental pick-up isotherm 
 
Pc critical value of P at which a plateau commences on the P versus R plot 
 
R particle-to-chemical ratio; number of magnetic particles per gram of 

chemical 
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R1 initial value of R on the experimental pick-up isotherm 
 
Rc critical value of R at which a plateau commences on the P versus R plot 
 
s(α0) sum of the squares of the residuals calculated in isotherm fitting algorithm 
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Figure Captions 

 

Figure 1 Computer-generated theoretical isotherms for the sequestering of 

chemical contaminants by magnetic particles in accordance with the 

model depicted by equations (1) and (7) to (10) for Pc = 90.0%, Rc = 1.8, 

m1 = 0.005 g and m2 = 0.5 g.  Values of α0 are: (a) 1.00, (b) 2.0, (c) 3.0 

and (d) 5.0. 

 

Figure 2 Isothermal pick-up at 20.0°C of 1.00 g of: (i) triethylamine (open squares, 

Pc = 97.0%, Rc = 5.6, α0 = 1.70) and (ii) m-dichlorobenzene (open circles, 

Pc = 96.8%, Rc = 3.5, α0 = 3.57) using PE-coated magnetic particles with 

average particle mass of 0.0820 g.  The solid curves are the computer-

generated fit to the experimental data.  The oblique straight lines represent 

the ideal isotherms in each case. 

 

Figure 3 Plot of α0 versus the efficiency parameter E1 = (dP/dR)0  derived from the 

data given in Table 1. 



S. W. Bigger et al., "A Mathematical Model for the Sequestering of . . . ", cont’d. 
 
 

19 

 
  
 
Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


