20 research outputs found

    Development of methods for the preparation of radiopure <sup>82</sup>Se sources for the SuperNEMO neutrinoless double-beta decay experiment

    Get PDF
    A radiochemical method for producing 82Se sources with an ultra-low level of contamination of natural radionuclides (40K, decay products of 232Th and 238U) has been developed based on cation-exchange chromatographic purification with reverse removal of impurities. It includes chromatographic separation (purification), reduction, conditioning (which includes decantation, centrifugation, washing, grinding, and drying), and 82Se foil production. The conditioning stage, during which highly dispersed elemental selenium is obtained by the reduction of purified selenious acid (H2SeO3) with sulfur dioxide (SO2) represents the crucial step in the preparation of radiopure 82Se samples. The natural selenium (600 g) was first produced in this procedure in order to refine the method. The technique developed was then used to produce 2.5 kg of radiopure enriched selenium (82Se). The produced 82Se samples were wrapped in polyethylene (12 μm thick) and radionuclides present in the sample were analyzed with the BiPo-3 detector. The radiopurity of the plastic materials (chromatographic column material and polypropylene chemical vessels), which were used at all stages, was determined by instrumental neutron activation analysis. The radiopurity of the 82Se foils was checked by measurements with the BiPo-3 spectrometer, which confirmed the high purity of the final product. The measured contamination level for 208Tl was 8-54 μBq/kg, and for 214Bi the detection limit of 600 μBq/kg has been reached.</p

    Measurement of the 2 nu beta beta decay half-life and search for the 0 nu beta beta decay of Cd-116 with the NEMO-3 detector

    Get PDF
    The NEMO-3 experiment measured the half-life of the 2 ν β β decay and searched for the 0 ν β β decay of 116 Cd . Using 410 g of 116 Cd installed in the detector with an exposure of 5.26 y, ( 4968 ± 74 ) events corresponding to the 2 ν β β decay of 116 Cd to the ground state of 116 Sn have been observed with a signal to background ratio of about 12. The half-life of the 2 ν β β decay has been measured to be T 2 ν 1 / 2 = [ 2.74 ± 0.04 ( stat ) ± 0.18 ( syst ) ] × 1 0 19     y . No events have been observed above the expected background while searching for 0 ν β β decay. The corresponding limit on the half-life is determined to be T 0 ν 1 / 2 ≥ 1.0 × 1 0 23     y at the 90% C.L. which corresponds to an upper limit on the effective Majorana neutrino mass of ⟨ m ν ⟩ ≤ 1.4 – 2.5     eV depending on the nuclear matrix elements considered. Limits on other mechanisms generating 0 ν β β decay such as the exchange of R-parity violating supersymmetric particles, right-handed currents and majoron emission are also obtained

    Search for Neutrinoless Quadruple-beta Decay of Nd-150 with the NEMO-3 Detector

    Get PDF
    We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-β decay of 150Nd using a total exposure of 0.19 kg·y recorded with the NEMO-3 detector at the Modane Underground Laboratory (LSM). We find no evidence of this decay and set lower limits on the half-life in the range T1/2 > (1.1–3.2) × 1021 y at the 90% CL, depending on the model used for the kinematic distributions of the emitted electrons

    Calorimeter development for the SuperNEMO double beta decay experiment

    Get PDF
    SuperNEMO is a double-β decay experiment, which will employ the successful tracker–calorimeter technique used in the recently completed NEMO-3 experiment. SuperNEMO will implement 100 kg of double-β decay isotope, reaching a sensitivity to the neutrinoless double-β decay (0νββ) half-life of the order of 1026 yr, corresponding to a Majorana neutrino mass of 50–100 meV. One of the main goals and challenges of the SuperNEMO detector development programme has been to reach a calorimeter energy resolution, ΔE∕E, around 3%∕E(MeV) σ, or 7%∕E(MeV) FWHM (full width at half maximum), using a calorimeter composed of large volume plastic scintillator blocks coupled to photomultiplier tubes. We describe the R&D programme and the final design of the SuperNEMO calorimeter that has met this challenging goal

    Miniaturized read-out interface “Spectrig MAPD” dedicated for silicon photomultipliers

    No full text
    The new pocket size read-out interface device dedicated for silicon photomultipliers (SiPM) has been designed and developed. While it was designed as a miniaturized and low power device it still provides a wide spectrum of functionality necessary for measurements and testing of SiPMs and SiPM based detectors. Full signal processing has been integrated within the device involving variable gain amplification, filtration and digitization. Signal acquisition can be performed with sampling frequency 400 MSa/s at 12 bit resolution or 600 MSa/s at 8 bit resolution while achieving full waveform capture & download rate about 20 000 events per second. The read-out interface is fully powered from the USB bus allowing operation without need of additional power line connection. An integrated bias source can be set in range from 0V to +200V with 12 bit precision. The read-out interface is primarily dedicated for spectroscopy purposes. There are two input signal channels with different optimization regarding the signal gain to cover a low energy range corresponding to single photo-electron detector response as well as to cover a high energy range corresponding to a detector response operated with scintillator registering gamma radiation in order of MeVs. Both input channels are equipped with fine gain adjustment in range from -9 dB to 26 dB with 1 dB step in addition to the fixed gain of each signal channel. The FPGA based design of the read-out interface allowed implementation of advanced triggering functionality like a data driven trigger, external trigger, gating of trigger to extend readout interface capability even further in a way of complex experiments. A set of functional tests and experiments with SiPM called micropixel avalanche photodiode (MAPD) and MAPD based detectors have been performed to characterize real properties of the read-out interface
    corecore