10 research outputs found

    Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages.

    No full text
    The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1's role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds

    Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages

    No full text
    The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1's role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds

    Coherence between cellular responses and in vitro splicing inhibition for the anti-tumor drug pladienolide B and its analogs.

    No full text
    Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible

    Enantioselective Synthesis of Spliceostatin E and Evaluation of Biological Activity

    No full text
    An enantioselective total synthesis of spliceostatin E has been accomplished. The δ-lactone unit A was constructed from readily available (<i>R</i>)-glycidyl alcohol using a ring-closing olefin metathesis as the key reaction. A cross-metathesis of ring A containing δ-lactone and the functionalized tetrahydropyran <i>B</i>-ring provided spliceostatin E. Our biological evaluation of synthetic spliceostatin E revealed that it does not inhibit splicing in vitro and does not impact speckle morphology in cells. Spliceostatin E was reported to possess potent antitumor activity

    Effect of Amoxicillin dose and treatment duration on the need for antibiotic re-treatment in children with Community-Acquired Pneumonia: The CAP-IT randomized clinical trial

    No full text
    Importance: The optimal dose and duration of oral amoxicillin for children with community-acquired pneumonia (CAP) are unclear. Objective: To determine whether lower-dose amoxicillin is noninferior to higher dose and whether 3-day treatment is noninferior to 7 days. Design, Setting, and Participants: Multicenter, randomized, 2 × 2 factorial noninferiority trial enrolling 824 children, aged 6 months and older, with clinically diagnosed CAP, treated with amoxicillin on discharge from emergency departments and inpatient wards of 28 hospitals in the UK and 1 in Ireland between February 2017 and April 2019, with last trial visit on May 21, 2019. Interventions: Children were randomized 1:1 to receive oral amoxicillin at a lower dose (35-50 mg/kg/d; n = 410) or higher dose (70-90 mg/kg/d; n = 404), for a shorter duration (3 days; n = 413) or a longer duration (7 days; n = 401). Main Outcomes and Measures: The primary outcome was clinically indicated antibiotic re-treatment for respiratory infection within 28 days after randomization. The noninferiority margin was 8%. Secondary outcomes included severity/duration of 9 parent-reported CAP symptoms, 3 antibiotic-related adverse events, and phenotypic resistance in colonizing Streptococcus pneumoniae isolates. Results: Of 824 participants randomized into 1 of the 4 groups, 814 received at least 1 dose of trial medication (median [IQR] age, 2.5 years [1.6-2.7]; 421 [52%] males and 393 [48%] females), and the primary outcome was available for 789 (97%). For lower vs higher dose, the primary outcome occurred in 12.6% with lower dose vs 12.4% with higher dose (difference, 0.2% [1-sided 95% CI -∞ to 4.0%]), and in 12.5% with 3-day treatment vs 12.5% with 7-day treatment (difference, 0.1% [1-sided 95% CI -∞ to 3.9]). Both groups demonstrated noninferiority with no significant interaction between dose and duration (P =.63). Of the 14 prespecified secondary end points, the only significant differences were 3-day vs 7-day treatment for cough duration (median 12 days vs 10 days; hazard ratio [HR], 1.2 [95% CI, 1.0 to 1.4]; P =.04) and sleep disturbed by cough (median, 4 days vs 4 days; HR, 1.2 [95% CI, 1.0 to 1.4]; P =.03). Among the subgroup of children with severe CAP, the primary end point occurred in 17.3% of lower-dose recipients vs 13.5% of higher-dose recipients (difference, 3.8% [1-sided 95% CI, -∞ to10%]; P value for interaction =.18) and in 16.0% with 3-day treatment vs 14.8% with 7-day treatment (difference, 1.2% [1-sided 95% CI, -∞ to 7.4%]; P value for interaction =.73). Conclusions and Relevance: Among children with CAP discharged from an emergency department or hospital ward (within 48 hours), lower-dose outpatient oral amoxicillin was noninferior to higher dose, and 3-day duration was noninferior to 7 days, with regard to need for antibiotic re-treatment. However, disease severity, treatment setting, prior antibiotics received, and acceptability of the noninferiority margin require consideration when interpreting the findings. Trial Registration: ISRCTN Identifier: ISRCTN76888927
    corecore