1,630 research outputs found

    Common DNA markers can account for more than half of the genetic influence on cognitive abilities

    Get PDF
    For nearly a century, twin and adoption studies have yielded substantial estimates of heritability for cognitive abilities, although it has proved difficult for genomewide-association studies to identify the genetic variants that account for this heritability (i.e., the missing-heritability problem). However, a new approach, genomewide complex-trait analysis (GCTA), forgoes the identification of individual variants to estimate the total heritability captured by common DNA markers on genotyping arrays. In the same sample of 3,154 pairs of 12-year-old twins, we directly compared twin-study heritability estimates for cognitive abilities (language, verbal, nonverbal, and general) with GCTA estimates captured by 1.7 million DNA markers. We found that DNA markers tagged by the array accounted for .66 of the estimated heritability, reaffirming that cognitive abilities are heritable. Larger sample sizes alone will be sufficient to identify many of the genetic variants that influence cognitive abilities

    Lines of Descent: Kuhn and Beyond

    Get PDF
    yesThomas S. Kuhn is famous both for his work on the Copernican Revolution and his ‘paradigm’ view of scientific revolutions. But Kuhn later abandoned the notion of paradigm (and related notions) in favour of a more ‘evolutionary’ view of the history of science. Kuhn’s position therefore moved closer to ‘continuity’ models of scientific progress, for instance ‘chain-of-reasoning’ models, originally championed by D. Shapere. The purpose of this paper is to contribute to the debate around Kuhn’s new ‘developmental’ view and to evaluate these competing models with reference to some major innovations in the history of cosmology, from Copernicanism to modern cosmology. This evaluation is made possible through some unexpected overlap between Kuhn’s earlier discontinuity model and various versions of the later continuity models. It is the thesis of this paper that the ‘chain-of-reasoning’ model accounts better for the cosmological evidence than both Kuhn’s early paradigm model and his later developmental view of the history of science

    Emergence d’une spécialité scientifique dans l’espace - La réparation de l’ADN

    Get PDF
    International audienceIn the study of science, the specialty is seen as the ideal level of analysis to understand the genesis and development of scientific communities. This article uses bibliometric data to analyze the emergence of DNA repair by testing a hybrid method to identify the specialty’s appearance in geographical space by focusing on the geographical trajectories of the pioneers in this field. We try to identify the professional mobility of researchers using these bibliometric data, and if possible to highlight the structural networks of places during the emergence stage of the specialty. These networks determine places as much as they are built by individual trajectories. In this way, we try to make a place for the geography of science in the field of social studies of science.Dans l’étude des sciences, la spécialité est perçue comme le niveau d’analyse idéal pour comprendre la genèse et le développement des collectifs scientifiques. Cet article utilise des données bibliométriques pour analyser l’émergence de la Réparation de l’ADN en expérimentant une méthode mixte pour repérer son apparition dans l’espace géographique. En nous concentrant sur les trajectoires géographiques de pionniers dans cedomaine, nous tâchons de repérer leur mobilité professionnelle à l’aide de données bibliométriques dans la perspective de mettre en évidence les réseaux de lieux structurants dans la phase d’émergence de la spécialité. Ces réseaux de lieux déterminent autant qu’ils sont construits par les trajectoires individuelles. Nous essayons ainsi de faire une place à la géographie des sciences dans le domaine des études sociales des sciences

    Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis.</p> <p>Method</p> <p>We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL) hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC) was used for both quantitative and molecular genetic analyses.</p> <p>Results</p> <p>At ages 2 and 3 ADHD symptoms are highly heritable (<it>h</it><sup><it>2 </it></sup><it>= </it>0.79 and 0.78, respectively) with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (<it>e</it><sup><it>2 </it></sup>= 0.22 and 0.21, respectively), with these influences being largely age-specific. In addition, we find modest association signals in <it>DAT1 </it>and <it>NET1 </it>at both ages, along with suggestive specific effects of <it>5-HTT </it>and <it>DRD4 </it>at age 3.</p> <p>Conclusions</p> <p>ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.</p

    Comparison of breast and bowel cancer screening uptake patterns in a common cohort of South Asian women in England

    Get PDF
    Background: Inequalities in uptake of cancer screening by ethnic minority populations are well documented in a number of international studies. However, most studies to date have explored screening uptake for a single cancer only. This paper compares breast and bowel cancer screening uptake for a cohort of South Asian women invited to undertake both, and similarly investigates these women's breast cancer screening behaviour over a period of fifteen years. Methods: Screening data for rounds 1, 2 and 5 (1989-2004) of the NHS breast cancer screening programme and for round 1 of the NHS bowel screening pilot (2000-2002) were obtained for women aged 50-69 resident in the English bowel screening pilot site, Coventry and Warwickshire, who had been invited to undertake breast and bowel cancer screening in the period 2000-2002. Breast and bowel cancer screening uptake levels were calculated and compared using the chi-squared test. Results: 72,566 women were invited to breast and bowel cancer screening after exclusions. Of these, 3,539 were South Asian and 69,027 non-Asian; 18,730 had been invited to mammography over the previous fifteen years (rounds 1 to 5). South Asian women were significantly less likely to undertake both breast and bowel cancer screening; 29.9% (n = 1,057) compared to 59.4% (n = 40,969) for non-Asians (p < 0.001). Women in both groups who consistently chose to undertake breast cancer screening in rounds 1, 2 and 5 were more likely to complete round 1 bowel cancer screening. However, the likelihood of completion of bowel cancer screening was still significantly lower for South Asians; 49.5% vs. 82.3% for non-Asians, p < 0.001. South Asian women who undertook breast cancer screening in only one round were no more likely to complete bowel cancer screening than those who decided against breast cancer screening in all three rounds. In contrast, similar women in the non-Asian population had an increased likelihood of completing the new bowel cancer screening test. The likelihood of continued uptake of mammography after undertaking screening in round 1 differed between South Asian religio-linguistic groups. Noticeably, women in the Muslim population were less likely to continue to participate in mammography than those in other South Asian groups. Conclusions: Culturally appropriate targeted interventions are required to reduce observed disparities in cancer screening uptakes

    Emergence of scale-free leadership structure in social recommender systems

    Get PDF
    The study of the organization of social networks is important for understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a "good get richer" mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems

    Exhaustive identification of steady state cycles in large stoichiometric networks

    Get PDF
    BACKGROUND: Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. RESULTS: We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. CONCLUSION: The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable

    Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy

    Get PDF
    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface could have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.Comment: accepted for publication in Natur

    Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei

    Get PDF
    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm−3) and 33% (36 cm−3) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm−3) in late-autumn but only 4% (4 cm−3) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic
    corecore