644 research outputs found

    On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    Get PDF
    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N2 gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10 900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 1022 m−3 were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.Fil: Prevosto, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Kelly, Hector Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mancinelli, Beatriz Rosa. Universidad Tecnológica Nacional. Facultad Regional Venado Tuerto; Argentin

    RPP: Automatic Proof of Relational Properties by Self-Composition

    Full text link
    Self-composition provides a powerful theoretical approach to prove relational properties, i.e. properties relating several program executions, that has been applied to compare two runs of one or similar programs (in secure dataflow properties, code transformations, etc.). This tool demo paper presents RPP, an original implementation of self-composition for specification and verification of relational properties in C programs in the FRAMA-C platform. We consider a very general notion of relational properties invoking any finite number of function calls of possibly dissimilar functions with possible nested calls. The new tool allows the user to specify a relational property, to prove it in a completely automatic way using classic deductive verification, and to use it as a hypothesis in the proof of other properties that may rely on it

    Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    Get PDF
    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron-ion recombination, and ion-ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7×104A/s. © 2014 AIP Publishing LLC.Fil: Mancinelli, Beatriz Rosa. Universidad Tecnológica Nacional. Facultad Regional Venado Tuerto; ArgentinaFil: Minotti, Fernando Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Prevosto, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Kelly, Hector Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentin

    Proceedings Fifth Workshop on Formal Integrated Development Environment

    Get PDF
    F-IDE 2019 is the fifth international workshop on Formal Integrated Development Environment, held on October 7, 2019 in Porto, Portugal, as part of the FM 2019 World Congress on Formal Methods. High levels of safety, security and also privacy standards require the use of formal methods to specify and develop compliant software (sub)systems. Any standard comes with an assessment process, which requires a complete documentation of the application in order to ease the justification of design choices and the review of code and proofs. Ideally, an F-IDE dedicated to such developments should comply with several requirements. The first one is to associate a logical theory with a programming language, in a way that facilitates the tightly coupled handling of specification properties and program constructs. The second is to offer a language/environment simple enough to be usable by most developers, even if they are not fully acquainted with higher-order logics or set theory, in particular by making development of proofs as easy as possible. The third is to offer automated management of application documentation. It may also be expected that developments done with such an F-IDE are reusable and modular. Tools for testing and static analysis may be embedded within F-IDEs to support the assessment process. The workshop is a forum of exchange on different features related to F-IDEs. We solicited several kinds of contributions: research papers providing new concepts and results, position papers and research perspectives, experience reports, tool presentations. The workshop was open to contributions on all aspects of a system development process, including specification, design, implementation, analysis and documentation. The current edition is a one-day workshop with eight communications, offering a large variety of approaches, techniques and tools. Each submission was reviewed by three reviewers. We also had the honor of welcoming Wolfgang Ahrendt, from Chalmers University of Technology, who gave a keynote entitled What is KeY's key to software verification?info:eu-repo/semantics/publishedVersio

    Modeling processes asymmetries with Laplace Moving Average.

    No full text
    Many records in environmental science exhibit asymmetries: for example in shallow water and with variable bathymetry, the sea wave time series shows front-back asymmetries and different shapes for crests and troughs. In such situation, numerical models are available but are highly CPU-time consuming. A stochastic process aimed at modeling such asymmetries has already been proposed, the Laplace Moving Average process. The objective of this study is to propose a new estimator of the defining function in a non-parametric approach. Results based on a comprehensive numerical study will be shown in order to evaluate the performances of the proposed method
    corecore