223 research outputs found

    Application of time–stress superposition to viscoelastic behavior of polyamide 6,6 fiber and its “true” elastic modulus

    Get PDF
    The viscoelastic behavior of semi-crystalline polyamide 6,6 fiber is exploited in viscoelastically prestressed polymeric matrix composites. To understand better the underlying prestress mechanisms, strain–time performance of the fiber material is investigated in this work, under high creep stress values (330–665 MPa). A latch-based Weibull model enables prediction of the “true” elastic modulus through instantaneous deformation from the creep-recovery data, giving 4.6 ± 0.4 GPa. The fiber shows approximate linear viscoelastic characteristics, so that the time–stress superposition principle (TSSP) can be implemented, with a linear relationship between the stress shift factor and applied stress. The resulting master creep curve enables creep behavior at 330 MPa to be predicted over a large timescale, thus creep at 590 MPa for 24 h would be equivalent to a 330 MPa creep stress for ∌5200 years. Similarly, the TSSP is applied to the resulting recovery data, to obtain a master recovery curve. This is equivalent to load removal in the master creep curve, in which the yarns would have been subjected to 330 MPa creep stress for ∌4.56 × 107 h. Since our work involves high stress values, the findings may be of interest to those involved with long-term load-bearing applications using polyamide materials

    Controlling molecular mobility and ductile–brittle transitions of polycarbonate copolymers

    Full text link
    To control molecular mobility and study its effects on mechanical properties, we synthesized two series of poly(ester carbonate) and polycarbonate copolymers with different linkages: (B x t) n ( x = 3, 5, 7, 9) and (B x T) n ( x = 1, 3, 5, 7, 9), where t represents the terephthalate, T represents the tetramethyl bisphenol A carbonate linkages, and B is the conventional bisphenol-A (BPA) carbonate. These two series of materials have distinct differences in their relaxation behaviors and chain mobility, as indicated by the Π-flip motion of the phenylene rings in the B x blocks. Uniaxial tensile tests of the copolymers indicate that the brittle–ductile transition (BDT) temperatures of the copolymers are correlated to whether the Γ-relaxation peaks due to the B x sequence is fully established. The materials possessing more fully established low-temperature Γ peaks give rise to a lower BDT. Also, the locations of the Γ peaks are correlated to the ring flips of the B x blocks of polymer chains. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1730–1740, 2001Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35007/1/1146_ftp.pd

    Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Divergently selected Lean and Fat mouse lines represent unique models for a polygenic form of resistance and susceptibility to obesity development. Previous research on these lines focused mainly on obesity-susceptible factors in the Fat line. This study aimed to examine the molecular basis of obesity-resistant mechanisms in the Lean line by analyzing various fat depots and organs, the liver transcriptome of selected metabolic pathways, plasma and lipid homeostasis and expression of selected skeletal muscle genes.</p> <p>Results</p> <p>Expression profiling using our custom Steroltalk v2 microarray demonstrated that Lean mice exhibit a higher hepatic expression of cholesterol biosynthesis genes compared to the Fat line, although this was not reflected in elevation of total plasma or liver cholesterol. However, FPLC analysis showed that protective HDL cholesterol was elevated in Lean mice. A significant difference between the strains was also found in bile acid metabolism. Lean mice had a higher expression of <it>Cyp8b1</it>, a regulatory enzyme of bile acid synthesis, and the <it>Abcb11 </it>bile acid transporter gene responsible for export of acids to the bile. Additionally, a higher content of blood circulating bile acids was observed in Lean mice. Elevated HDL and upregulation of some bile acids synthesis and transport genes suggests enhanced reverse cholesterol transport in the Lean line - the flux of cholesterol out of the body is higher which is compensated by upregulation of endogenous cholesterol biosynthesis. Increased skeletal muscle <it>Il6 </it>and <it>Dio2 </it>mRNA levels as well as increased activity of muscle succinic acid dehydrogenase (SDH) in the Lean mice demonstrates for the first time that changes in muscle energy metabolism play important role in the Lean line phenotype determination and corroborate our previous findings of increased physical activity and thermogenesis in this line. Finally, differential expression of <it>Abcb11 </it>and <it>Dio2 </it>identifies novel strong positional candidate genes as they map within the quantitative trait loci (QTL) regions detected previously in crosses between the Lean and Fat mice.</p> <p>Conclusion</p> <p>We identified novel candidate molecular targets and metabolic changes which can at least in part explain resistance to obesity development in the Lean line. The major difference between the Lean and Fat mice was in increased liver cholesterol biosynthesis gene mRNA expression, bile acid metabolism and changes in selected muscle genes' expression in the Lean line. The liver <it>Abcb11 </it>and muscle <it>Dio2 </it>were identified as novel positional candidate genes to explain part of the phenotypic difference between the Lean and Fat lines.</p

    Dynamic relaxations in a bio-based polyamide with enhanced mechanical modulus

    Get PDF
    A new grade of bio-based polyamide (PA)—PA meta-xylylene diamine 10 (PA mXD 10)—was investigated. Its first interest is that it permits mild processing conditions at about 200°C. The calorimetric study shows the existence of two cold crystallizations indicative of slow crystallization rate. The glass transition stabilizes at 55°C. By combining calorimetry with dynamic mechanical analysis and dynamic dielectric spectroscopy, we found a perfect consistency between the set of data giving the molecular mobility. The localized relaxations follow Arrhenius equations while the viscoelastic transition follows a Vogel–Fulcher–Tammann law. The compilation of all the relaxation times determined by means of the different analyses highlights a good correlation. This result is perfectly explained by the polarity of the macromolecular chain. The dynamic mechanical behavior showed a storage modulus higher than for the corresponding aliphatic PA and nearly constant until room temperature

    Melt Spinning of Fibers: Effect of Air Drag

    No full text
    • 

    corecore