4,895 research outputs found
Gravity-induced birefringence within the framework of Poincare gauge theory
Gauge theories of gravity provide an elegant and promising extension of
general relativity. In this paper we show that the Poincar\'e gauge theory
exhibits gravity-induced birefringence under the assumption of a specific gauge
invariant nonminimal coupling between torsion and Maxwell's field. Furthermore
we give for the first time an explicit expression for the induced phaseshift
between two orthogonal polarization modes within the Poincar\'e framework.
Since such a phaseshift can lead to a depolarization of light emitted from an
extended source this effect is, in principle, observable. We use white dwarf
polarimetric data to constrain the essential coupling constant responsible for
this effect.Comment: 12 pages, accepted for publication by Physical Review
Bayesian analysis of magnetic island dynamics
We examine a first order differential equation with respect to time coming up
in the description of magnetic islands in magnetically confined plasmas. The
free parameters of this equation are obtained by employing Bayesian probability
theory. Additionally a typical Bayesian change point is solved in the process
of obtaining the data.Comment: 10 pages, 4 figures, submitted to be included in MaxEnt 2002
proceeding
The influence of the strength of bone on the deformation of acetabular shells : a laboratory experiment in cadavers
Date of Acceptance: 24/08/2014 ©2015 The British Editorial Society of Bone & Joint Surgery. The authors would like to thank N. Taylor (3D Measurement Company) for his work with regard to data acquisition and processing of experimental data. We would also like to thank Dr A. Blain of Newcastle University for performing the statistical analysis The research was supported by the NIHR Newcastle Biomedical Research Centre. The authors P. Dold, M. Flohr and R. Preuss are employed by Ceramtec GmbH. Martin Bone received a salary from the joint fund. The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. This article was primary edited by G. Scott and first proof edited by J. Scott.Peer reviewedPostprin
The spectral weight of the Hubbard model through cluster perturbation theory
We calculate the spectral weight of the one- and two-dimensional Hubbard
models, by performing exact diagonalizations of finite clusters and treating
inter-cluster hopping with perturbation theory. Even with relatively modest
clusters (e.g. 12 sites), the spectra thus obtained give an accurate
description of the exact results. Thus, spin-charge separation (i.e. an
extended spectral weight bounded by singularities) is clearly recognized in the
one-dimensional Hubbard model, and so is extended spectral weight in the
two-dimensional Hubbard model.Comment: 4 pages, 5 figure
Comparative Analysis of a Transition Region Bright Point with a Blinker and Coronal Bright Point Using Multiple EIS Emission Lines
Since their discovery twenty year ago, transition region bright points
(TRBPs) have never been observed spectroscopically. Bright point properties
have not been compared with similar transition region and coronal structures.
In this work we have investigated three transient quiet Sun brightenings
including a TRBP, a coronal BP (CBP) and a blinker. We use time-series
observations of the extreme ultraviolet emission lines of a wide range of
temperature T (log T = 5.3 - 6.4) from the EUV imaging spectrometer (EIS)
onboard the Hinode satellite. We present the EIS temperature maps and Doppler
maps, which are compared with magnetograms from the Michelson Doppler Imager
(MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker
are <,25 km s, which is typical of transient TR phenomena. The Dopper
velocities of the CBP were found to be < 20 km s^{-1} with exception of those
measured at log T = 6.2 where a distinct bi-directional jet is observed. From
an EM loci analysis we find evidence of single and double isothermal components
in the TRBP and CBP, respectively. TRBP and CBP loci curves are characterized
by broad distributions suggesting the existence of unresolved structure. By
comparing and contrasting the physical characteristics of the events we find
the BP phenomena are an indication of multi-scaled self similarity, given
similarities in both their underlying magnetic field configuration and
evolution in relation to EUV flux changes. In contrast, the blinker phenomena
and the TRBP are sufficiently dissimilar in their observed properties as to
constitute different event classes. Our work indicates that the measurement of
similar characteristics across multiple event types holds class-predictive
power, and is a significant step towards automated solar atmospheric
multi-class classification of unresolved transient EUV sources.Comment: 38 pages, 16 figure
Recommended from our members
Human-specific transcriptional regulation of CNS development genes by FOXP2.
The signalling pathways controlling both the evolution and development of language in the human brain remain unknown. So far, the transcription factor FOXP2 (forkhead box P2) is the only gene implicated in Mendelian forms of human speech and language dysfunction. It has been proposed that the amino acid composition in the human variant of FOXP2 has undergone accelerated evolution, and this two-amino-acid change occurred around the time of language emergence in humans. However, this remains controversial, and whether the acquisition of these amino acids in human FOXP2 has any functional consequence in human neurons remains untested. Here we demonstrate that these two human-specific amino acids alter FOXP2 function by conferring differential transcriptional regulation in vitro. We extend these observations in vivo to human and chimpanzee brain, and use network analysis to identify novel relationships among the differentially expressed genes. These data provide experimental support for the functional relevance of changes in FOXP2 that occur on the human lineage, highlighting specific pathways with direct consequences for human brain development and disease in the central nervous system (CNS). Because FOXP2 has an important role in speech and language in humans, the identified targets may have a critical function in the development and evolution of language circuitry in humans
Discovering Evolutionary Stepping Stones through Behavior Domination
Behavior domination is proposed as a tool for understanding and harnessing
the power of evolutionary systems to discover and exploit useful stepping
stones. Novelty search has shown promise in overcoming deception by collecting
diverse stepping stones, and several algorithms have been proposed that combine
novelty with a more traditional fitness measure to refocus search and help
novelty search scale to more complex domains. However, combinations of novelty
and fitness do not necessarily preserve the stepping stone discovery that
novelty search affords. In several existing methods, competition between
solutions can lead to an unintended loss of diversity. Behavior domination
defines a class of algorithms that avoid this problem, while inheriting
theoretical guarantees from multiobjective optimization. Several existing
algorithms are shown to be in this class, and a new algorithm is introduced
based on fast non-dominated sorting. Experimental results show that this
algorithm outperforms existing approaches in domains that contain useful
stepping stones, and its advantage is sustained with scale. The conclusion is
that behavior domination can help illuminate the complex dynamics of
behavior-driven search, and can thus lead to the design of more scalable and
robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2017
An astronomical search for evidence of new physics: Limits on gravity-induced birefringence from the magnetic white dwarf RE J0317-853
The coupling of the electromagnetic field directly with gravitational gauge
fields leads to new physical effects that can be tested using astronomical
data. Here we consider a particular case for closer scrutiny, a specific
nonminimal coupling of torsion to electromagnetism, which enters into a
metric-affine geometry of space-time. We show that under the assumption of this
nonminimal coupling, spacetime is birefringent in the presence of such a
gravitational field. This leads to the depolarization of light emitted from
extended astrophysical sources. We use polarimetric data of the magnetic white
dwarf to set strong constraints on the essential coupling
constant for this effect, giving k^2 \lsim (19 {m})^2 .Comment: Statements about Moffat's NGT modified. Accepted for publication in
Phys.Rev.
Artificial and Computational Intelligence in Games (Dagstuhl Seminar 12191)
This report documents the program and the outcomes of Dagstuhl Seminar 12191 "Artificial and Computational Intelligence in Games". The aim for the seminar was to bring together creative experts in an intensive meeting with the common goals of gaining a deeper understanding of various aspects of artificial and computational intelligence in games, to help identify the main challenges in game AI research and the most promising venues to deal with them. This was accomplished mainly by means of workgroups on 14 different topics (ranging from search, learning, and modeling to architectures, narratives, and evaluation), and plenary discussions on the results of the workgroups. This report presents the conclusions that each of the workgroups reached. We also added short descriptions of the few talks that were unrelated to any of the workgroups
- …
