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Abstract  

Concerns have been raised that deformation of acetabular shells may disrupt the assembly 

process of modular prostheses. In this study we aimed to examine the effect that the strength 

of bone has on the amount of deformation of the acetabular shell. The hypothesis was that 

stronger bone would result in greater deformation. A total of 17 acetabular shells were 

inserted into the acetabula of eight cadavers, and deformation was measured using an optical 

measuring system. Cores of bone from the femoral head were taken from each cadaver and 

compressed using a materials testing machine. The highest peak modulus and yield stress for 

each cadaver were used to represent the strength of the bone and compared with the values 

for the deformation and the surgeon’s subjective assessment of the hardness of the bone. The 

mean deformation of the shell was 129 μm (3 to 340). No correlation was found between 

deformation and either the maximum peak modulus (r² = 0.011, t = 0.426, p = 0.676) or the 

yield stress (r² = 0.024, t = 0.614, p = 0.549) of the bone. Although no correlation was found 

between the strength of the bone and deformation, the values for the deformation observed 

could be sufficient to disrupt the assembly process of modular acetabular components. 



During the 1970s uncemented acetabular components became popular, despite more than a 

decade of success using cemented components.[[1]] Uncemented components remain popular 

[Jameson et al. 2013]; data from the 2013 National Joint Registry of England, Wales and 

Northern Ireland showed that between 2004 and 2012 the use of cemented acetabular 

components declined.[[2]] Cementless acetabular components require initial stability through 

a press-fit within the acetabulum.[[3,4]] Although uncemented components offer advantages 

such as preservation of bone stock,[[5]] there are concerns that the forces required to achieve 

initial fixation may result in significant deformation of the acetabular shell.[[6-8]] 

Deformation is thought to be linked to several variables. Previous in-vitro, cadaveric 

and finite element studies have examined deformation of the acetabular component with 

regard to different variables such as the diameter of the component,[[4,9]] under-

reaming,[[6]] the thickness of the component[[9,10]] and positioning.[[11]] We are not aware 

of studies that have related deformation the strength of the bone. 

The aim of this study in cadavers was to determine whether deformation of the 

acetabular shell correlates with the stiffness or strength of the underlying bone. The 

hypothesis was that stiffer and/or stronger bone would result in greater deformation. 

Materials and Methods 

Cadaver and implant details 
A series of 17 titanium acetabular shells (each used only once) were inserted into eight 

cadavers in a temperature-controlled laboratory. The posterior surface of the shells was grit 

blasted with an estimated roughness average of 2 to 5 µm. There were three female and five 

male cadavers. Their mean age at the time of death was 74.1 years (58 to 87); their mean 

weight was 72.4 kg (32 to 113) and their mean height was 170 cms (152 to 193). The shells 

were custom manufactured for these experiments by CeramTec (CeramTec GmbH, 

Plochingen, Germany) from a titanium alloy (TiAl6V4) with a thickness of 3 mm. As the 



sizes of the cadaver acetabula could not be determined prior to the start of the experiment, a 

range of external diameters of the shell between 44 mm and 62 mm were available. 

 

Table 1. Details of the cadavers 

Cadaver Gender Age (yrs) Height (cm) Weight (kg) 

1 Female 72 170 43 

2 Male 70 168 73 

3 Male 80 193 80 

4 Female 82 152 32 

5 Male 58 175 113 

6 Male 85 163 84 

7 Female 59 163 68 

8 Male 87 178 86 

 

Surgical method 
A large incision was created using a posterior approach and up to 20 cm of the proximal 

femur was resected in order to provide the necessary access for the measurement system. 

Reaming was performed in 2 mm increments until the true floor of the acetabulum was 

exposed. Next, the reaming was expanded to remove the cartilage down to a hemispherical 

subchondral bed of bone suitable to securely press-fit a hemispherical shell without the need 

for screw fixation. After reaming, the surgeon graded the bone on a 3-point scale, 1 being the 

hardest and 3 the softest. The shells were then implanted as intended in a standard hip 

replacement. The amount of reaming was adjusted to achieve stable primary fixation that 

would be acceptable in live surgery in all cases. This involved reaming “to size” in eight 

shells, and under-reaming by 1 mm in nine shells. Fixation was defined as complete medial 

contact with the surgeon unable to pull the shell out or rotate it manually. In order to 

maximise the usefulness of the cadaver, in large patients it was sometimes possible to re-



ream the acetabulum and insert a larger shell while still obtaining a secure press-fit. Shells 

were therefore inserted into 11 acetabula, with five acetabula having more than one 

implanted. 

Measurement of Deformation 
Measurements were performed immediately before and within five minutes after introduction 

of the shell using the GOM ATOS III Triple Scan optical system (GOM GmbH, 

Braunshweig, Germany). These two measurements were then compared to determine the 

deformation in a plane at 1 mm below the rim of the shell. This distance was chosen because 

previous measurements using this system have shown that although the shell is subject to 

asymmetrical deformation, the highest values are recorded at the rim.[[12]] The GOM system 

uses two cameras to determine the position and size of the object using an interferometric 

technique. A previous validation study [[12]] found that the maximum difference between the 

GOM system and a coordinate measuring machine (CMM) (Carl Zeiss Industrielle 

Messtechnik GmbH, Oberkochen, Germany) for this application was 5 µm. A thin titanium 

oxide (TiO2) coating was applied to the internal surfaces of the shells to dull the reflective 

surface. In order to prevent damage to the coating, surgical swabs were applied to the area 

surrounding the shell to absorb any moisture. The method of measurement and validation 

have been described previously.[[13]] 

Testing the strength of bone 
Core samples of cancellous bone were taken from each cadaver following the method 

described by Li and Aspden[[14]], to examine the mechanical properties of femoral 

cancellous bone. A total of 75 samples were taken from five sites across each of the 15 

femoral heads: the superior, inferior, anterior, posterior and central surfaces. No samples 

were taken from one femoral head as no shells had been implanted in the corresponding 



acetabulum. Cores were removed using a bit and drill approximately perpendicular to the 

surface, so that the axis of the cylinder was towards the centre of the femoral head. 

For each sample, the subchondral bone was removed and the ends were trimmed. The 

mean diameter of the core was 7.8 mm (7.2 to 8.2) and the mean length was 12.7 mm (6.7 to 

21.0). Each sample was then subjected to an unconstrained compression test on an Instron 

5564 materials testing machine (Instron, High Wycombe, Buckinghamshure, United 

Kingdom) using the technique described previously.[[14]] A strain rate of 20% per minute 

was used and load–displacement curves were plotted. In order to avoid damaging the samples 

unnecessarily, tests were stopped manually once the slope of the curve was seen to be 

reducing. 

Data processing 
Loads and displacements were converted to stresses and strains by dividing by the original 

cross-sectional area and length of each sample. A program was written in MathCad 

(Parametric Technology Corporation, Needham, MA, USA) to import and analyse the stress–

strain data. A polynomial curve was fitted to a section of the rising part of the curve and 

differentiated to determine the gradient. The region of the curve and the degree of polynomial 

(most commonly five) were selected to ensure close fitting to the steepest part of the curve 

without over-fitting, as judged visually and by least-squares distance between the fitted curve 

and the data. Key points of the test are shown in Figure 1. Peak modulus and yield stress were 

then obtained from the data. Peak modulus, and the corresponding stress and strain values, 

was taken as the greatest value of the gradient. Yield stress was the stress at the yield point, 

which was defined as the point at which the modulus decreased by 3% from its peak value. 

This may be too stringent, but uses the same approach as Li and Aspden.[[14]] The peak 

modulus is defined as the resistance of the material to the applied stress. Yield stress is the 



point at which elastic deformation stops and the sample is left with permanent or plastic 

deformation, once the load has been removed.[[15]] 

 

 

 

The greatest peak modulus and yield stress for each femoral head were recorded. Results 

from the left and right femora of the same cadaver were combined and the values for the 

overall greatest peak modulus and yield stress were used for that cadaver. These values were 

then compared with both the values for the deformation and the surgeon’s grading of the 

bone. Although this provided information on how surgical ‘feel’ matches against mechanical 

data, it is acknowledged that the surgical grading is very subjective.  It should be noted that 

femoral bone quality was taken as a surrogate marker for acetabular bone quality.  



Statistical analysis 
The statistical significance of the relationships between deformation and both peak modulus 

and yield stress was assessed using the statistical package R (R Foundation for statistical 

computing, Vienna, Austria) and a linear regression. Deformation was assessed against the 

diameter of the shell using generalised linear models with a gaussian error structure to ensure 

that it did not influence the results, and p < 0.05 was considered to be statistically significant. 

Results 

The strength of the bone  
During compression testing, data from the bone cores of one femur were lost owing to a 

computer malfunction, and 13 samples toppled over during testing when loaded, and so were 

excluded from the results. Data were therefore available from 57 cores. A minimum of two 

results for each femoral head and five results per cadaver were available for analysis. The 

mean peak modulus was 320.5 MPa (79.6 to 469.7) and the mean yield stress was 6.5 MPa 

(1.3 to 13.0). 

Comparisons of the surgeon’s grading of the bone and mechanical testing results are 

shown in Figures 2 and 3, respectively. The mean peak modulus for the eight cadavers did 

not match with the surgeon’s grading, the grading being correct for only two samples 

(cadavers 1 and 4). Yield stress provided a closer agreement with the surgeon’s grading than 

peak modulus, with the grading correct for five samples.  

 



 

 

 

Deformation 
Figure 4 shows the comparison between deformation of the shell and peak modulus, and 

Figure 5 shows the comparison between deformation and yield stress for the 17 shells. The 

mean deformation was 129 µm (3 to 340). Figure 6 shows the deformation as a percentage 



change in diameter, and Figure 7 shows the comparison between deformation and the 

diameter of the shell.  

 

  

 

 



 

 

No correlation was found between deformation and peak modulus (r² = 0.012, t = 0.426, p = 

0.676) or deformation and yield stress (r² = 0.024, t = 0.614, p = 0.549), nor was any 



correlation found between deformation and the diameter of the shell (r² = 0.000, t = –0.026, p 

= 0.979).  

Discussion 
The lack of correlation between deformation and peak modulus or yield stress was in contrast 

to the hypothesis that greater strength or stiffness of bone would result in greater 

deformation. 

Deformation has been linked with many variables but we believe this to be the first 

paper to examine the influence that bone has on deformation. The mean deformation of 129 

µm found in our study was comparable with that reported previously. In 2006 Squire et 

al[[4]] reported a mean deformation of 160 µm (0 to 570) in a study involving 100 Pinnacle 

shells (DePuy, Warsaw, IN, USA) inserted into 21 patients (eight men and 13 women). Jin et 

al[[6]] reported a mean deformation of 65 µm (25 to 103) in seven custom-made acetabular 

components inserted into cadavers. Liu et al[[8]] reported a mean deformation of 41.7 µm 

(SD 8.9) in six Durom (Zimmer Inc, Warsaw, IN, USA) acetabular components inserted into 

surgically-prepared cadaveric pelves. The maximum deformation in our study (340 µm) 

could be sufficient to interfere with the assembly process of a modular acetabular system. 

The clearance of such modular systems is likely to be of the order of 80 µm and 120 µm.[[6]] 

In all cases the surgeon was able to obtain a satisfactory press-fit, despite the 

variability in the strength of the bone. Figure 3 shows a potential relationship between the 

surgeons’s grading and his/her ability to identify the softest and hardest bone correctly. 

However, the mid-range bone was more difficult to assess accurately. Owing to the small 

sample size, no statistical analysis was performed. 

There were several limitations to the study. First, during the compression tests, 13 

samples of bone toppled over during loading, rather than failing via compression. This was 

probably caused by the ends not being trimmed perpendicular to the axis of the cylinder of 



bone. In order to overcome this obstacle, the results for the left and right femora were 

combined and the peak modulus and yield stresses compared with deformation. The second 

main limitation was the risk of microfractures by implanting multiple acetabular shells in one 

acetabulum. To reduce the risk of this the surgeon would inspect the acetabulum after 

removing a shell, to ensure that the bone was not visually fractured, before reaming and 

implanting the next shell. No visible fractures were identified by the surgeon in this study.  

The third limitation was the need to use different diameters of shell. Ideally all 

samples would have been of the same diameter, as it has been shown that this can influence 

the extent of deformation, but because of the limited numbers of cadavers available, this was 

not possible. However, the results of the statistical analysis showed no correlation between 

the diameter of the shell and deformation. 

The final limitation was using the properties of the bone of the femoral head as a 

surrogate for that of the acetabulum. This was done because the reaming process leaves little 

bone available in this location. Also, the reaming process itself may have caused damage to 

the bone that would weaken it, if its strength were to be measured retrospectively. 

We have identified only one study measuring the properties of bone around but not 

within the acetabulum.[[16]] This found relatively low values of Young’s modulus in pelvic 

bone, rarely exceeding 100 MPa. Owing to its sandwich construction, with trabecular bone 

contained within a thin cortical shell, the overall mechanical behaviour of the pelvic bone has 

limited sensitivity to variation in the mechanical properties of trabecular bone.[[17]] 

Given that these bones form opposing load-bearing regions, it is reasonable, in our 

view, to suppose that the bone may have similar properties on either side, as has been shown 

for the instantaneous modulus of articular cartilage over opposing joint surfaces.[[18]] 

As deformation of the shell occurs predominantly as a result of the non-uniform 

acetabular structure, it is necessary to perform further research. It has previously been shown 



that the shape of the acetabulum results in two-point loading of uncemented acetabular shells. 

Therefore, such a study would involve determining how the strength of the bone of the 

femoral head relates to the stresses required to expand the acetabulum by a given value. 

This study has shown that the strength of the bone has no relationship with the 

amount of deformation of press-fit acetabular shells. This lack of association is possibly 

explained by the fact the surgeon achieved a satisfactory surgical press-fit despite the 

difference in bone quality. Further studies examining the relaxation of the bone are 

recommended to determine how the deformation of the shell develops over longer periods. 
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