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Gauge theories of gravity provide an elegant and promising extension of general relativity. In this paper
we show that the Poincaré gauge theory exhibits gravity-induced birefringence under the assumption of a
specific gauge invariant nonminimal coupling between torsion and Maxwell’s field. Furthermore we give
for the first time an explicit expression for the induced phase shift between two orthogonal polarization
modes within the Poincaré framework. Since such a phase shift can lead to a depolarization of light
emitted from an extended source this effect is, in principle, observable. We use white dwarf polarimetric
data to constrain the essential coupling constant responsible for this effect.
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I. INTRODUCTION

Almost 90 years after its formulation, Einstein’s concept
of gravity as a purely geometrical property of a four
dimensional Riemannian manifold still provides a valid
description of gravitational interactions. A major reason
for this success is that the influence of matter is introduced
solely by means of its energy-momentum tensor. It is clear
that this phenomenological approach is justified as long as
we are interested only in macroscopic events but obviously
a more complete description of matter properties is
achieved if we include also spin angular momentum be-
sides energy momentum as an additional basic feature
which determines the dynamics of matter on microscopic
scales.

Currently, in this sense the most promising extensions of
general relativity are given in the framework of gauge
theories of gravity [1,2]. The description of fundamental
interactions by means of gauge symmetries has become a
cornerstone in modern theoretical physics. Especially
Poincaré symmetry has been proven to play an important
role in particle physics, and the analysis of the Colella-
Overhauser-Werner experiment [3] suggests the emer-
gence of a post-Riemannian spacetime structure which
could be described by a Riemann-Cartan U, spacetime.
A very natural alternative to general relativity [4] based on
such an U, spacetime is given by Poincaré gauge theory
(PGT) of gravity. PGT features torsion and curvature as
gravitational gauge fields so that within this framework
both mass and spin act as sources of the gravitational field.

In this paper we focus on consequences which arise from
a possible nonminimal coupling between the torsion of
PGT and the electromagnetic field. In contrast to the usual
minimal coupling scheme where the propagation of elec-
tromagnetic waves is not affected by the presence of
torsion, the direct coupling of the electromagnetic field
with a gravitational gauge field leads to new physical
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effects like gravity-induced birefringence [5—9]. This non-
minimal approach is motivated also by low-energy limits
of string theories where torsion is identified with a mass-
less antisymmetric second rank Kalb-Ramond (KR) field,
present in most supergravity theories and as such in the
massless sector of the most viable string theories [10].
Consequently, the covariant derivative of this KR field is
a field of the same tensor type as the torsion field we
consider and so can, in principle, couple to the electro-
magnetic field in the same ways that torsion can [11-13].
Recently, Limmerzahl and Hehl investigated light propa-
gation within a Finslerian geometry of spacetime [14].
They found that vanishing birefringence automatically
yields a Riemannian structure and no Finslerian structure
can occur.

In addition to the conventional Maxwell Lagrangian, the
specific nonminimal coupling we employ is given by

Lgy = p>* (T, AF)T® AF, (1

where * is the Hodge dual, 7% denotes the torsion 2-form
and F the electromagnetic field strength 2-form, which is
related in the usual way F = dA to its potential A [7-
9,151".

This addition requires a new coupling constant p with
the dimension of [length]. p is supposed to be a new
fundamental constant of nature, related to torsion and is
not just a parameter of a special solution. From the theo-
retical side, there is no preferred choice for what the length
scale defined by p might be. However, one should be
careful in assigning a real physical length to it.
Remember that also the cosmological constant A in gen-
eral relativity with the dimension of [length] 2 turns out to
be possibly a measure of the vacuum energy density. Since
we are using geometrized units throughout this article, p

"Note that the wedge symbol of the exterior product between
the O-form (or scalar) *(7T, A F) and the 4-form (T, A F) is

_ omitted in accordance with the standard mathematical
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could also be related to a mass or an energy scale. Hence, p
may be related to the restmass or the energy of the ex-
change particles of the torsion field [16]. These questions
are going to be further investigated in an upcoming project.
Nevertheless, what we can say is that p is related to the
strength of a possible nonminimal coupling between the
electromagnetic field and torsion, leading to birefringent
spacetime (see also [17]).

This addition is gauge invariant and, so, compatible with
charge conservation. In this context, it was later shown by
Itin and Hehl [18] that (1) is a special case of a complete
family of quadratic torsion Lagrangians which couple to
Maxwell’s field and which leads besides birefringence to
an axion-induced optical activity of spacetime and, fur-
thermore, to a torsion dependent speed of light:

1
Ley = — gp Z (Fachdilanpq)‘ 2
a,.nq

Here the summation is performed by contracting the in-
dices by means of the metric tensor.

This paper is organized as follows: First, we give a brief
recapitulation of the Poincaré gauge theory where the field
strengths of the compensating gauge fields are identified as
torsion and curvature. Then, using the Baekler-Lee solu-
tion for a spherically symmetric torsion, we show that the
Lagrangian (1) leads to gravity-induced birefringence and
give an explicit expression for the accumulated phase shift
between orthogonal polarization modes in the gravitational
field of a star. Since this effect leads to a depolarization of
radiation, emitted from an extended source, we use white
dwarf polarimetric data to set strong limits on the essential
coupling constant. Finally, a discussion and conclusions
are presented.

II. POINCARE GAUGE THEORY

Our subsequent brief summary of basic features of PGT
mainly follows the notation of Blagojevi¢ [2]. Within the
framework of Lagrangian based field theory, the equations
of motion are given as the Euler-Lagrange equations of the
action integral

Sy = [ dxLyy(b, 0b). 3)

with the matter field ¢(x) as the dynamical variable in a
Minkowski spacetime M. To ensure the conservation of
energy momentum and angular momentum, one demands
the invariance of (3) under global (rigid) Poincaré trans-
formations

xXH = xt 4+ £8(x), & = w* x” + €M, 4)

where the Lorentz rotations w*” = —w”* and translations
€* provide ten constant parameters. Here, Greek indices
always refer to coordinate lines of the underlying
Minkowski space M,. As a consequence, matter fields
¢ (x) transform according to
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XM= xl + wijxf + €

W)= (145070, )60
©

where ©;; denotes the spin matrix, related to the multi-
component structure of ¢(x). Latin indices refer to a local
Lorentz frame, tangent to M,. If one defines Sy (x) =
@'(x) — ¢(x), the action (3) is invariant under the trans-
formation x' = x + £(x) if

AL=6gL+ 0, L+ (0,6")L =0, (6)
where 8oL = (0L/3¢$)5gp + (0L )80 [19,20],

so that Noether’s theorem leads to conserved energy mo-
mentum and angular momentum tensors.

In a next step, the Poincaré transformations are gener-
alized by replacing the ten constant group parameters with
corresponding functions of spacetime points, i.e.

w — wl(x), ek — e(x). 7
Based on experience, e.g. from QED, it is then no surprise
that the invariance condition (6) is now violated. However,
this problem can be circumvented in the usual way by
means of a covariant derivative V¢ of ¢ which is intro-
duced in two steps:

1
Vid =@, +A)$ A, =547,0,  ®)

vkd) = ng,ud) - A'ukvp,d) = hk'uvp,d)’ 9

with the new field i, # = 6} — A*,. In order to restore the
local invariance of the theory, one introduces r M=
AL,y (d, Vi), where A is a suitable function of the new
fields. Then the invariance condition (6) is restored if
8oA + 9,(é#A) = 0, which is given by A = det(b*,) =
b, where b*, is just the inverse of h*: b*, h* = 8%
Finally, the locally invariant Lagrangian for matter fields
reads

Ly =0bLy(¢, Vo). (10)

The corresponding field strengths of the new compensating
fields b*, and A, are given by the tensors

Fi,, = BMA"j,, - BVAijM + AiS,MASf,, — AiSVASjM (11)

my
FiM,, = Vﬂbi,, - V,,b"w (12)

which are called the Lorentz and translation field strengths,
respectively. From the structure of these tensors it is now
easy to conclude that the translation field strength F’ uv 18
nothing but the torsion 7* uv» While the Lorentz field
strength F/, can be identified with the curvature R},
[2]. Therefore, it is evident that PGT possesses a Riemann-
Cartan spacetime where both mass and spin are sources of
the gravitational field.
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IT1. BIREFRINGENCE ANALYSIS
The starting point for our analysis is the frequently
discussed quadratic PGT Lagrangian proposed by von
der Heyde [21]

Loy = 1 (T4 ,T.«+2TF T, )+ 1 RU R P
UdH_W alt ji Briy E aBji

13)

where € denotes the Planck length and « is a dimensionless
coupling constant for the Lorentz gauge bosons. Among
the numerous solutions which have been found for this
Lagrangian, the most transparent one is the Baekler-Lee
solution [22,23] of Reissner-Nordstrom type with dynamic
torsion.

Starting with the usual Schwarzschild tetrad

el =2V dr, e’ = dr/\2¥ (14)
¥ =rdo,  e? = rsinddo, (15)

the Baekler-Lee solution is appreciably simplified by ap-
plying a suitable boost 3“ = Ageﬁ so that the correspond-

ing orthogonal coframe takes the form [1]

I = %((\If + 1)dr + <1 = %)dr)

1 1
F=_((V - +(1+—

o =2 ((‘I’ 1)dt (1 W)w) 06

& = rdo

9 = rsindd,

with the Reissner-Nordstrom function

2(Mr — ¢* K
_ X . q)_wrz’ (17)

which can be interpreted as a Newtonian plus a “confine-
ment‘‘ type of potential as discussed in [24]. The “‘con-
finement** or sometimes called ‘“‘cosmological*‘ term is
induced by the coupling constant x of curvature square
term in the Lagrangian (13) which means that the von der
Heyde Lagrangian (13) itself does not carry a cosmological
constant. M and g denote the gravitational mass and elec-
tric charge, respectively.

From (13) and the absence of an explicit cosmological
term in the Lagrangian, one has to conclude that within
Poincaré gauge theory basically two types of gravity exist:
(i) Weak gravity which is the usual gravity of Newton-
Einstein type. Weak gravity couples to mass and energy
momentum with the gravitational constant as the relevant
coupling constant. (ii) Strong gravity mediated by a short
range potential with a dimensionless strong coupling con-
stant k. This potential is asymptotically free and confining,
thus relating gravity to the physics of hadrons [22,24].
Consequently, this strong gravity would not be observable

vi.=1
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on macroscopic scales so that this term does not play any
role in our further analysis. It is also obvious that the strong
coupling constant « is not related to the new coupling
constant p in Eq. (1) which describes the coupling between
torsion and electromagnetism.

The corresponding metric is then given by

1
ds? = —Vdr* + @dr2 + r2(d6* + sin0d¢p?).  (18)

The metric in Eq. (18) is of Scharzschild—de Sitter type. It
describes a spacetime that is not asymptotically but con-
formally flat, i.e. it has an asymptotic curvature induced by
the term «r*/4€> from Eq. (17) so that an asymptotically
flat spacetime is given only for k — 0. By adding a bare
cosmological constant to (13), one could shift its value by a
suitable choice of k which would asymptotically lead to a
Minkowski space. Asymptotically flat solutions of PGT
were also investigated by Hayashi and Shirafuji in [25].
Now, the torsion of the Baekler-Lee solution reads

C . Mr=2g
Tl =10 == i A,
r
- Mr—a® . - . .
70 =2 L (i a9? -9 A, (19)
r
R Mr— ag®> . R . R
76 =L (97 A 9% — 97 A 99).
r

This solution is consistent with the most general static,
spherically O(3)-symmetric form for a torsion field [26]

T = a(r)6' A 07 + a@(r)0° A 0%, (20)
T = B(NO' A 07 + B(r6° A 69, 1)

Té = 'y(l)ﬁf A 09 + ’)/(2)0f A 043
+ v 0" A 07 + 40" A 62, (22)

T = y,67 A 0% — y2)0" A 67
+ 30" A 0% — 540" A 6P (23)

The solution (19) is a special case having a@(r) = B(r) =
Y2) = Y@ = 0. Plugging this general torsion field into the
Lagrangian density (1) the coefficients of the magnetic and
electric field components can be expressed in terms of
SO(3)-symmetric tensors &7, %/ and y"/ which represent
spatial anisotropy induced by the gravitational field. As
shown in [7,8], the accumulated phase shift A® which is
due to the fractional difference 8c¢/c in the propagation
speed of linear polarization states with frequency w

AP = w ﬁdz, (24)
C

can be expressed in terms of the spherical components of
these SO(3) tensors by using the Haugan-Kauffmann for-
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malism [27]. However, one has to be careful since [27] uses
a (+ — ——) metric, while the Baekler-Lee solution is
based on a (— + ++) metric so that either (19) or the
Haugan-Kauffmann formalism has to be rewritten in terms
of a different metric.

The general expression for dc/c is then given by

S¢ _ \/Vsmzﬂ\/(f(z)‘i‘ (2)y2 +4(7(2))2 (25)
¢

with
& = (vh + 73 (26)
D= (@ - ) +2( +7h) QD
= (Y Yw) — Y0 Ye)- (28)

Comparing the coefficients of the general O(3)-symmetric
Torsion with the Baekler-Lee solution we find

Mr — g%
e (29)

Mr — ¢°)?
R (30)
Y& =0, 31)

which leads to
2 Mr — g*)*\?

- \gsin% /(2 %) (32)

r

2 1

— 2\£ MPsin?6 —, (33)

in case of vanishing charge g = 0. Therefore, the total
phase shift becomes

p | sin?
AD = Zw\ﬁszz f SR (34)
3 fo r

The evaluation of this integral requires a ray parametriza-
tion x(7) = b + Ky where the unit vector k, denotes the
ray direction and b is the impact vector that connects the
center of the star with the closest point on the ray. When b
is smaller than the radius R of the star, the portion of the ray
inside the object is, of course, of no interest. The integra-
tion of (34) is performed from the star’s surface with 7, =
(R% — b?)'/2 along a straight line up to an observer at an
infinite distance #; = oo, which yields
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AD = 2\£ oM?p*R*(1 — p?)

o0 dt

. ﬁo_RM (R*(1 = p?) + ) G
where w denotes the cosine of the heliocentric angle 6
between the ray’s source and the center of the visible stellar
disk. This integral is easily evaluated, so that we finally get
the total phase shift which accumulates between two or-
thogonal polarization states within the framework of
Poincaré gauge theory

AD — g477'M2p2 3 M 3u
3 AR \16(1 — w232 4 8(1 — u?)

3 .
- W arcsm(,u)) (36)
with the new Poincaré coupling constant p having the
dimension of length and the mass M in geometrized units.
It is interesting to see that (36) shows a remarkable simi-
larity to the phase shift formula from Moffat’s old version
of nonsymmetric gravitational theory [28]. Nevertheless,
while this nonvanishing birefringence was found on the
basis of the special Baeckler-Lee solution, it is important to
note that Rubilar et al. [29] proved that our nonminimal
Lagrangian (1) leads to birefringence even for a general
O(3)-symmetric torsion field.

IV. ASTROPHYSICAL CONSTRAINTS

The question how gravitational birefringence influences
polarized radiation in the vicinity of a particular star de-
pends, among others, on the properties of the emitting
source. In case of a pointlike source of polarized radiation,
all received light suffers the same phase shift A®(w).

Polarized light is described by means of wavelength
dependent Stokes parameters 1,, Q,, U,, V, [30], where
Stokes Q represents the difference between linear polar-
ization parallel and perpendicular to the local stellar limb.
The effect of gravitational birefringence is to introduce a
crosstalk between the linear polarization parameter Stokes
U and the net circular polarization, V. This crosstalk is
such that, although the observed values U, and V, differ
from the values emitted by a point source, U, and V., the
composite degree of polarization remains equal: (U2, +

Obs)l/Z = (Ur src)l/z-

In case of an extended source covering a range of u
values, light emitted from different points suffers different
phase shifts and, so, adds up to an incoherent superposi-
tion. Using the additive properties of Stokes parameters,
summing over different contributions yields a reduction of
the observed polarization relative to the light emitted from
the source: (U, + V2 )2 < (U2, + V2.)'/2. Since the
rotationally modulated polarlzatlon from magnetic white
dwarfs can only be produced by an extended source [31],
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any observed (i.e. nonzero) degree of polarization provides
a limit on the strength of birefringence induced by the
star’s gravitational field [6].

It is generally agreed that polarized radiation from white
dwarfs is produced at the stellar surface as a result of the
presence of ultrastrong (up to 10° T) magnetic fields [32].
Since the disk of a white dwarf is unresolved, only the total
polarization from all surface elements is observable.
Therefore, the flux of net circular polarization at wave-
length A emitted toward the observer can be written as

Vasalp) = 27 [[ Vilos, B, 0) cos(a@)udods. G7)

Here, the Stokes parameter V), changes over the visible
hemisphere and depends on the wavelength A, the location
M (limb darkening), the total magnetic field strength B, the
angle 6 between the magnetic field and the line-of-sight
component, and on the parameters of the stellar atmo-
sphere influencing line formation. The influence of gravi-
tational birefringence on the polarization is introduced by
the term cos(A®) as a function of w. The Stokes parame-
ters can be calculated by solving the radiative transfer
equations through a magnetized stellar atmosphere on a
large number of surface elements on the visible hemisphere
(e.g. [33]). If the star is rotating, the spectrum and polar-
ization pattern changes according to the respective mag-
netic field distribution visible at a particular moment. The
degree of circular polarization is obtained by dividing
Eq. (37) by the total stellar flux I, ;. emitted to the observer
at wavelength A. Below we will calculate a maximum
circular polarization V) .x/I) o from radiative transfer
calculations which is higher than the observed value
Vaobs/Inobs- Then we assume that the reduction from
Vmax 10 V) ops 18 entirely due to the factor cos(A®(p))
in Eq. (37), thereby calculating the maximum value for p,
i.e. our limit on p is reached as soon as V) /I in
Eq. (37) becomes smaller than V) /I, for a certain
value of p.

RE J0317-853 is a highly unusual object within the class
of isolated magnetic white dwarfs which sets several re-
cords: Besides being the most rapidly rotating star (P =
725 sec) of this type, it is also the most massive at
1.35M, close to the Chandrasekhar limit [34] with a
corresponding radius of only 0.0035R,. In [35] a degree
Vobs/ Irtor Of 20% at A = 576 nm [35], RE J0317-853 is
also the magnetic white dwarf with the highest known level
of circular polarization. Because of its small radius and
high degree of circular polarization, RE J0317-853 is a
very suitable object for setting limits on gravitational
birefringence. The analysis of time resolved UV flux spec-
tra obtained with the Hubble space telescope has shown
that the distribution of the field moduli is approximately
that of an off-centered magnetic dipole oriented obliquely
to the rotation axis with a polar field strength at the surface
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of B, =3.63 X 10* T, leading to visible surface field
strengths between 1.4 X 10* T and 7.3 X 10* T [36].
This model is not only able to describe the UV, but also
the optical spectra (Jordan et al. [37]), which means that
the distribution of the magnetic field moduli—but not
necessarily of the longitudinal components—is correctly
described. This result is completely independent of the
magnitude of the gravitational birefringence, since it is
obtained entirely from the intensity spectrum. From radia-
tive transfer calculations it follows that, at the phase of
rotation when the maximum value of 20% polarization at
576 nm is measured, almost the entire visible stellar sur-
face is covered by magnetic fields between 1.4 X 10* and
2.0 X 10* T, with only a small tail extending to maximum
field strengths of 5.3 X 10*. This distribution is best repro-
duced at a rotational phase where the axis of the off-
centered dipole is nearly perpendicular to the line of sight.
Using this field geometry, we calculated a histogram dis-
tribution of the visible surface magnetic field strengths in
order to set sharp limits on gravitational birefringence. For
each field strength bin of the histogram, we calculated the
maximum circular polarization from radiative transfer cal-
culations by assuming that the field vector always points
towards the observer. The total maximum polarization
from the whole visible stellar disk without gravitational
birefringence is then calculated by adding up the contribu-
tions from each field strength bin weighted with its relative
frequency. This results in V) /Iy or = 26.5%. Assuming
that the reduction to V) ops/I)or = 20% is entirely due to
gravity-induced depolarization—and not due to the fact
that in reality not all field vectors point towards the ob-
server—we find an upper limit for this effect of p?> <
(0.9 km)?. Since there is always a small uncertainty in
determining the exact mass of a white dwarf, we also
calculated an upper limit on p? assuming a lower mass
of 1My. This leads to p?> < (1.2 km)?. An even more
extreme assumption would be to take 100% emerging
polarization, i.e. neglect the dipole model and make no
reference to radiative transfer calculations. This leads to
p? = (2.125 km).

V. DISCUSSION AND CONCLUSIONS

We have shown that the Poincaré gauge theory exhibits
gravitational birefringence under the assumption of a spe-
cific nonminimal coupling and have given an explicit ex-
pression for the gravity-induced phase shift between
orthogonal polarization states. Using spectropolarimetric
observations of the massive white dwarf RE J0317-853 we
imposed strong constraints on the birefringence of space-
time with an upper limit on the relevant coupling constant
p? of (0.9 km)? or p? < (2.125 km)? for the most conser-
vative assumptions. Since gravity-induced birefringence
violates the FEinstein equivalence principle, our analysis
also provides a test of this foundation of general relativity.
Tighter limits could be achieved either by observing more
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massive white dwarfs or by circular polarization measure-
ments at significantly shorter wavelength, such as in the far
ultraviolet (e.g. in the Ly« absorption features). In addi-
tion, a consistent model for the magnetic field geometry
which reproduces the spectropolarimetric measurements in
the optical would help.

The properties of the exchange particles of the torsion
field within PGT, especially their masses, are currently not

PHYSICAL REVIEW D 72, 042001 (2005)

bound from the theoretical side and, therefore, the rele-
vance for astrophysical observations still requires further
work [16,38].
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