72 research outputs found

    Collocation and Pattern Recognition Effects on System Failure Remediation

    Get PDF
    Previous research found that operators prefer to have status, alerts, and controls located on the same screen. Unfortunately, that research was done with displays that were not designed specifically for collocation. In this experiment, twelve subjects evaluated two displays specifically designed for collocating system information against a baseline that consisted of dial status displays, a separate alert area, and a controls panel. These displays differed in the amount of collocation, pattern matching, and parameter movement compared to display size. During the data runs, subjects kept a randomly moving target centered on a display using a left-handed joystick and they scanned system displays to find a problem in order to correct it using the provided checklist. Results indicate that large parameter movement aided detection and then pattern recognition is needed for diagnosis but the collocated displays centralized all the information subjects needed, which reduced workload. Therefore, the collocated display with large parameter movement may be an acceptable display after familiarization because of the possible pattern recognition developed with training and its use

    Predictive Information: Status or Alert Information?

    Get PDF
    Previous research investigating the efficacy of predictive information for detecting and diagnosing aircraft system failures found that subjects like to have predictive information concerning when a parameter would reach an alert range. This research focused on where the predictive information should be located, whether the information should be more closely associated with the parameter information or with the alert information. Each subject saw 3 forms of predictive information: (1) none, (2) a predictive alert message, and (3) predictive information on the status display. Generally, subjects performed better and preferred to have predictive information available although the difference between status and alert predictive information was minimal. Overall, for detection and recalling what happened, status predictive information is best; however for diagnosis, alert predictive information holds a slight edge

    Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    Get PDF
    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew

    Finite-temperature dynamics of a single vortex in a Bose-Einstein condensate: Equilibrium precession and rotational symmetry breaking

    Full text link
    We consider a finite-temperature Bose-Einstein condensate in a quasi-two-dimensional trap containing a single precessing vortex. We find that such a configuration arises naturally as an ergodic equilibrium of the projected Gross-Pitaevskii equation, when constrained to a finite conserved angular momentum. In an isotropic trapping potential the condensation of the classical field into an off-axis vortex state breaks the rotational symmetry of the system. We present a methodology to identify the condensate and the Goldstone mode associated with the broken rotational symmetry in the classical-field model. We also examine the variation in vortex trajectories and thermodynamic parameters of the field as the energy of the microcanonical field simulation is varied.Comment: 21 pages, 10 figures. v2: Minor changes and corrections to figures and text. To appear in PR

    Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium

    Get PDF
    While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations

    Trastuzumab for HER2-positive early stage breast cancer : a meta-analysis of individual patient data from 13,864 women from seven randomised trials

    Get PDF
    Background: Trastuzumab targets the extracellular domain of the HER2 protein. Adding trastuzumab to chemotherapy for patients with early-stage, HER2-positive breast cancer reduces the risk of recurrence and death, but is associated with cardiac toxicity. We investigated the long-term benefits and risks of adjuvant trastuzumab on breast cancer recurrence and cause-specific mortality. Methods: We did a collaborative meta-analysis of individual patient data from randomised trials assessing chemotherapy plus trastuzumab versus the same chemotherapy alone. Randomised trials that enrolled women with node-negative or node-positive, operable breast cancer were included. We collected individual patient-level data on baseline characteristics, dates and sites of first distant breast cancer recurrence and any previous local recurrence or second primary cancer, and the date and underlying cause of death. Primary outcomes were breast cancer recurrence, breast cancer mortality, death without recurrence, and all-cause mortality. Standard intention-to-treat log-rank analyses, stratified by age, nodal status, oestrogen receptor (ER) status, and trial yielded first-event rate ratios (RRs). Findings: Seven randomised trials met the inclusion criteria, and included 13 864 patients enrolled between February, 2000, and December, 2005. Mean scheduled treatment duration was 14·4 months and median follow-up was 10·7 years (IQR 9·5 to 11·9). The risks of breast cancer recurrence (RR 0·66, 95% CI 0·62 to 0·71; p<0·0001) and death from breast cancer (0·67, 0·61 to 0·73; p<0·0001) were lower with trastuzumab plus chemotherapy than with chemotherapy alone. Absolute 10-year recurrence risk was reduced by 9·0% (95% CI 7·4 to 10·7; p<0·0001) and 10-year breast cancer mortality was reduced by 6·4% (4·9 to 7·8; p<0·0001), with a 6·5% reduction (5·0 to 8·0; p<0·0001) in all-cause mortality, and no increase in death without recurrence (0·4%, –0·3 to 1·1; p=0·35). The proportional reduction in recurrence was largest in years 0–1 after randomisation (0·53, 99% CI 0·46 to 0·61), with benefits persisting through years 2–4 (0·73, 0·62 to 0·85) and 5–9 (0·80, 0·64 to 1·01), and little follow-up beyond year 10. Proportional recurrence reductions were similar irrespective of recorded patient and tumour characteristics, including ER status. The more high risk the tumour, the larger the absolute reductions in 5-year recurrence (eg, 5·7% [95% CI 3·1 to 8·3], 6·8% [4·7 to 9·0], and 10·7% [7·7 to 13·6] in N0, N1–3, and N4+ disease). Interpretation: Adding trastuzumab to chemotherapy for early-stage, HER2-positive breast cancer reduces recurrence of, and mortality from, breast cancer by a third, with worthwhile proportional reductions irrespective of recorded patient and tumour characteristics. Funding: Cancer Research UK, UK Medical Research Council

    The Formation of the First Stars in the Universe

    Full text link
    In this review, I survey our current understanding of how the very first stars in the universe formed, with a focus on three main areas of interest: the formation of the first protogalaxies and the cooling of gas within them, the nature and extent of fragmentation within the cool gas, and the physics -- in particular the interplay between protostellar accretion and protostellar feedback -- that serves to determine the final stellar mass. In each of these areas, I have attempted to show how our thinking has developed over recent years, aided in large part by the increasing ease with which we can now perform detailed numerical simulations of primordial star formation. I have also tried to indicate the areas where our understanding remains incomplete, and to identify some of the most important unsolved problems.Comment: 74 pages, 4 figures. Accepted for publication in Space Science Review

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg

    Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults

    Get PDF
    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious
    corecore