3,307 research outputs found

    The Use of Data Processing in Litigation

    Get PDF

    Sex differences in variability across timescales in BALB/c mice.

    Get PDF
    BackgroundFemales are markedly underinvestigated in the biological and behavioral sciences due to the presumption that cyclic hormonal changes across the ovulatory cycle introduce excess variability to measures of interest in comparison to males. However, recent analyses indicate that male and female mice and rats exhibit comparable variability across numerous physiological and behavioral measures, even when the stage of the estrous cycle is not considered. Hormonal changes across the ovulatory cycle likely contribute cyclic, intra-individual variability in females, but the source(s) of male variability has, to our knowledge, not been investigated. It is unclear whether male variability, like that of females, is temporally structured and, therefore, quantifiable and predictable. Finally, whether males and females exhibit variability on similar time scales has not been explored.MethodsThese questions were addressed by collecting chronic, high temporal resolution locomotor activity (LA) and core body temperature (CBT) data from male and female BALB/c mice.ResultsContrary to expectation, males are more variable than females over the course of the day (diel variability) and exhibit higher intra-individual daily range than females in both LA and CBT. Between mice of a given sex, variability is comparable for LA but the inter-individual daily range in CBT is greater for males. To identify potential rhythmic processes contributing to these sex differences, we employed wavelet transformations across a range of periodicities (1-39 h).ConclusionsAlthough variability in circadian power is comparable between the sexes for both LA and CBT, infradian variability is greater in females and ultradian variability is greater in males. Thus, exclusion of female mice from studies because of estrous cycle variability may increase variance in investigations where only male measures are collected over a span of several hours and limit generalization of findings from males to females

    Full-Water Column Turbulence Parameterization of Stratified Waters in Southern Lake Michigan

    Get PDF
    Full water column mean flow and turbulence structure was characterized at two stratified locations in Lake Michigan (a. Muskegon, MI; b. Michigan City, IN) in order to better understand the filtration potential of invasive quagga mussels. Invasive quagga mussels in Lake Michigan are filter feeders and can dramatically alter clarity as well as the biological/chemical characteristics of the water column. This filtering capacity is highly contingent on turbulence characteristics throughout the water column, which is poorly understood in the Great Lakes. Using velocity, temperature, and turbulence data collected from these locations, the structure of the water column turbulence was modeled for site (a) using data from 2011 and measured for site (b) in 2017. The data from 2017 was collected as a test run of a new acoustic Doppler current profiler, the Nortek Signature500, that will be utilized in future experiments on Lake Michigan. This data was analyzed to better characterize the turbulence structure of Lake Michigan and how it is affected by wind events and wave trends. Using power spectra and turbulence structure function, the turbulent kinetic energy dissipation of the full water column was analyzed from these two locations. This analysis provides insight into the turbulence structure of the full-water column in a stratified lake and will be utilized to prepare for the execution of future sampling events in Lake Michigan

    Using machine learning to detect the differential usage of novel gene isoforms

    Get PDF
    BACKGROUND: Differential isoform usage is an important driver of inter-individual phenotypic diversity and is linked to various diseases and traits. However, accurately detecting the differential usage of different gene transcripts between groups can be difficult, in particular in less well annotated genomes where the spectrum of transcript isoforms is largely unknown. RESULTS: We investigated whether machine learning approaches can detect differential isoform usage based purely on the distribution of reads across a gene region. We illustrate that gradient boosting and elastic net approaches can successfully identify large numbers of genes showing potential differential isoform usage between Europeans and Africans, that are enriched among relevant biological pathways and significantly overlap those identified by previous approaches. We demonstrate that diversity at the 3′ and 5′ ends of genes are primary drivers of these differences between populations. CONCLUSION: Machine learning methods can effectively detect differential isoform usage from read fraction data, and can provide novel insights into the biological differences between groups. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-04576-3

    Super-Eddington Atmospheres that Don't Blow Away

    Get PDF
    We show that magnetized, radiation dominated atmospheres can support steady state patterns of density inhomogeneity that enable them to radiate at far above the Eddington limit, without suffering mass loss. The inhomogeneities consist of periodic shock fronts bounding narrow, high-density regions, interspersed with much broader regions of low density. The radiation flux avoids the regions of high density, which are therefore weighed down by gravity, while gas in the low-density regions is slammed upward into the shock fronts by radiation force. As the wave pattern moves through the atmosphere, each parcel of matter alternately experiences upward and downward forces, which balance on average. Magnetic tension shares the competing forces between regions of different densities, preventing the atmosphere from blowing apart. We calculate the density structure and phase speed of the wave pattern, and relate these to the wavelength, the density contrast, and the factor by which the net radiation flux exceeds the Eddington limit. In principle, this factor can be as large as the ratio of magnetic pressure to mean gas pressure, or the ratio of radiation pressure to gas pressure, whichever is smaller. Although the magnetic pressure must be large compared to the mean gas pressure in order to support a large density contrast, it need not be large compared to the radiation pressure. These highly inhomogeneous flows could represent the nonlinear development of the "photon bubble" instability discovered by Gammie. We briefly discuss the applicability of these solutions to astrophysical systems.Comment: 11 pages, 1 figure, accepted for publication in The Astrophysical Journa

    Unexpected benefits of pre-university skills training for A-level students

    Get PDF
    First-year undergraduates can find the transition from the prescriptive learning environment at school to one of self-directed learning at university, a considerable challenge. A Pre-university Skills Course (PSC) was developed to address this issue by preparing sixth formers for the university learning style. It was piloted with students in the year prior to A-level examinations at a selective state-funded school in East Anglia. The present paper examines the effect of the course on the students’ A-level tariff. Chi-squared analysis of A-level grades of students with comparable GCSE results, indicate that students who undertook the PSC performed significantly better in their A-level results than those who did not. These data demonstrate how skills training might improve A-level performance and assist in the transition to university
    • …
    corecore