952 research outputs found

    Galilean Invariant Preconditioned Central Moment Lattice Boltzmann Method without Cubic Velocity Errors for Efficient Steady Flow Simulations

    Full text link
    Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third order diagonal moments on the first order moments for standard lattices, and strategies have recently been introduced to restore GI without such errors using a modified collision operator involving either corrections to the relaxation times or to the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that alleviates the numerical stiffness. In the present study, we present a GI formulation of the preconditioned cascaded central moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. Improvements in accuracy and convergence acceleration are demonstrated.Comment: 43 pages, 14 figure

    Inertial Frame Independent Forcing for Discrete Velocity Boltzmann Equation: Implications for Filtered Turbulence Simulation

    Full text link
    We present a systematic derivation of a model based on the central moment lattice Boltzmann equation that rigorously maintains Galilean invariance of forces to simulate inertial frame independent flow fields. In this regard, the central moments, i.e. moments shifted by the local fluid velocity, of the discrete source terms of the lattice Boltzmann equation are obtained by matching those of the continuous full Boltzmann equation of various orders. This results in an exact hierarchical identity between the central moments of the source terms of a given order and the components of the central moments of the distribution functions and sources of lower orders. The corresponding source terms in velocity space are then obtained from an exact inverse transformation due to a suitable choice of orthogonal basis for moments. Furthermore, such a central moment based kinetic model is further extended by incorporating reduced compressibility effects to represent incompressible flow. Moreover, the description and simulation of fluid turbulence for full or any subset of scales or their averaged behavior should remain independent of any inertial frame of reference. Thus, based on the above formulation, a new approach in lattice Boltzmann framework to incorporate turbulence models for simulation of Galilean invariant statistical averaged or filtered turbulent fluid motion is discussed.Comment: 37 pages, 1 figur

    Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning

    Full text link
    Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extended system with a preconditioned lattice kinetic equation for magnetic induction field at low magnetic Prandtl numbers, which imposes Lorentz forces on the flow of conducting fluids. Computational studies, particularly in three-dimensions, for canonical problems show that the number of time steps needed to reach steady state is reduced by orders of magnitude with preconditioning. In addition, the preconditioning approach resulted in significantly improved stability characteristics when compared with the corresponding single relaxation time formulation.Comment: 47 pages, 21 figures, for publication in Journal of Computational Physic

    Application of NTRU Cryptographic Algorithm for securing SCADA communication

    Full text link
    Supervisory Control and Data Acquisition (SCADA) system is a control system which is widely used in Critical Infrastructure System to monitor and control industrial processes autonomously. Most of the SCADA communication protocols are vulnerable to various types of cyber-related attacks. The currently used security standards for SCADA communication specify the use of asymmetric cryptographic algorithms like RSA or ECC for securing SCADA communications. There are certain performance issues with cryptographic solutions of these specifications when applied to SCADA system with real-time constraints and hardware limitations. To overcome this issue, in this thesis we propose the use of a faster and light-weighted NTRU cryptographic algorithm for authentication and data integrity in securing SCADA communication. Experimental research conducted on ARMv6 based Raspberry Pi and Intel Core machine shows that cryptographic operations of NTRU is two to thirty five times faster than the corresponding RSA or ECC. Usage of NTRU algorithm reduces computation and memory overhead significantly making it suitable for SCADA systems with real-time constraints and hardware limitations
    corecore