35 research outputs found
Unbinned Deep Learning Jet Substructure Measurement in High ep collisions at HERA
The radiation pattern within high energy quark- and gluon-initiated jets (jet
substructure) is used extensively as a precision probe of the strong force as
well as an environment for optimizing event generators with numerous
applications in high energy particle and nuclear physics. Looking at
electron-proton collisions is of particular interest as many of the
complications present at hadron colliders are absent. A detailed study of
modern jet substructure observables, jet angularities, in electron-proton
collisions is presented using data recorded using the H1 detector at HERA. The
measurement is unbinned and multi-dimensional, using machine learning to
correct for detector effects. All of the available reconstructed object
information of the respective jets is interpreted by a graph neural network,
achieving superior precision on a selected set of jet angularities. Training
these networks was enabled by the use of a large number of GPUs in the
Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed
in the laboratory frame, using the jet clustering algorithm.
Results are reported at high transverse momentum transfer GeV,
and inelasticity . The analysis is also performed in sub-regions
of , thus probing scale dependencies of the substructure variables. The
data are compared with a variety of predictions and point towards possible
improvements of such models.Comment: 33 pages, 10 figures, 8 table
Impact of jet-production data on the next-to-next-to-leading-order determination of HERAPDF2.0 parton distributions
The HERAPDF2.0 ensemble of parton distribution functions (PDFs) was introduced in 2015. The final stage is presented, a next-to-next-to-leading-order (NNLO) analysis of the HERA data on inclusive deep inelastic ep scattering together with jet data as published by the H1 and ZEUS collaborations. A perturbative QCD fit, simultaneously of αs(M2Z) and the PDFs, was performed with the result αs(M2Z)=0.1156±0.0011 (exp) +0.0001−0.0002 (model +parameterisation) ±0.0029 (scale). The PDF sets of HERAPDF2.0Jets NNLO were determined with separate fits using two fixed values of αs(M2Z), αs(M2Z)=0.1155 and 0.118, since the latter value was already chosen for the published HERAPDF2.0 NNLO analysis based on HERA inclusive DIS data only. The different sets of PDFs are presented, evaluated and compared. The consistency of the PDFs determined with and without the jet data demonstrates the consistency of HERA inclusive and jet-production cross-section data. The inclusion of the jet data reduced the uncertainty on the gluon PDF. Predictions based on the PDFs of HERAPDF2.0Jets NNLO give an excellent description of the jet-production data used as input
Impact of jet-production data on the next-to-next-to-leading-order determination of HERAPDF2.0 parton distributions
International audienceThe HERAPDF2.0 ensemble of parton distribution functions (PDFs) was introduced in 2015. The final stage is presented, a next-to-next-to-leading-order (NNLO) analysis of the HERA data on inclusive deep inelastic ep scattering together with jet data as published by the H1 and ZEUS collaborations. A perturbative QCD fit, simultaneously of and the PDFs, was performed with the result . The PDF sets of HERAPDF2.0Jets NNLO were determined with separate fits using two fixed values of , and 0.118, since the latter value was already chosen for the published HERAPDF2.0 NNLO analysis based on HERA inclusive DIS data only. The different sets of PDFs are presented, evaluated and compared. The consistency of the PDFs determined with and without the jet data demonstrates the consistency of HERA inclusive and jet-production cross-section data. The inclusion of the jet data reduced the uncertainty on the gluon PDF. Predictions based on the PDFs of HERAPDF2.0Jets NNLO give an excellent description of the jet-production data used as input
Recommended from our members
Unbinned Deep Learning Jet Substructure Measurement in High ep collisions at HERA
The radiation pattern within high energy quark- and gluon-initiated jets (jet
substructure) is used extensively as a precision probe of the strong force as
well as an environment for optimizing event generators with numerous
applications in high energy particle and nuclear physics. Looking at
electron-proton collisions is of particular interest as many of the
complications present at hadron colliders are absent. A detailed study of
modern jet substructure observables, jet angularities, in electron-proton
collisions is presented using data recorded using the H1 detector at HERA. The
measurement is unbinned and multi-dimensional, using machine learning to
correct for detector effects. All of the available reconstructed object
information of the respective jets is interpreted by a graph neural network,
achieving superior precision on a selected set of jet angularities. Training
these networks was enabled by the use of a large number of GPUs in the
Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed
in the laboratory frame, using the jet clustering algorithm.
Results are reported at high transverse momentum transfer Q^2>150 GeV,
and inelasticity 0.2 < y < 0.7. The analysis is also performed in sub-regions
of , thus probing scale dependencies of the substructure variables. The
data are compared with a variety of predictions and point towards possible
improvements of such models
Recommended from our members
Unbinned deep learning jet substructure measurement in high Q 2 ep collisions at HERA
The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the kT jet clustering algorithm. Results are reported at high transverse momentum transfer Q2>150GeV2, and inelasticity 0.
Fermilab Test Beam Facility Annual Report: FY19
This Technical Memorandum (TM) summarizes the Fermilab Test Beam Faciltiy (FTBF) operations for FY2019. It is one of a series of annual publications intended to gather information in one place. This TM discusses the experiments performed at the Test Beam from November 2018 to July 2019. The experiments are listed in Table 1. Each experiment wrote a summary that was edited for clarity and is included in this report
Observation and differential cross section measurement of neutral current DIS events with an empty hemisphere in the Breit frame
International audienceThe Breit frame provides a natural frame to analyze lepton-proton scattering events. In this reference frame, the parton model hard interactions between a quark and an exchanged boson defines the coordinate system such that the struck quark is back-scattered along the virtual photon momentum direction. In Quantum Chromodynamics (QCD), higher order perturbative or non-perturbative effects can change this picture drastically. As Bjorken- decreases below one half, a rather peculiar event signature is predicted with increasing probability, where no radiation is present in one of the two Breit-frame hemispheres and all emissions are to be found in the other hemisphere. At higher orders in or in the presence of soft QCD effects, predictions of the rate of these events are far from trivial, and that motivates measurements with real data. We report on the first observation of the empty current hemisphere events in electron-proton collisions at the HERA collider using data recorded with the H1 detector at a center-of-mass energy of 319 GeV. The fraction of inclusive neutral-current DIS events with an empty hemisphere is found to be in the selected kinematic region of GeV and inelasticity . The data sample corresponds to an integrated luminosity of 351.1 pb, sufficient to enable differential cross section measurements of these events. The results show an enhanced discriminating power at lower Bjorken- among different Monte Carlo event generator predictions
Observation and differential cross section measurement of neutral current DIS events with an empty hemisphere in the Breit frame
International audienceThe Breit frame provides a natural frame to analyze lepton-proton scattering events. In this reference frame, the parton model hard interactions between a quark and an exchanged boson defines the coordinate system such that the struck quark is back-scattered along the virtual photon momentum direction. In Quantum Chromodynamics (QCD), higher order perturbative or non-perturbative effects can change this picture drastically. As Bjorken- decreases below one half, a rather peculiar event signature is predicted with increasing probability, where no radiation is present in one of the two Breit-frame hemispheres and all emissions are to be found in the other hemisphere. At higher orders in or in the presence of soft QCD effects, predictions of the rate of these events are far from trivial, and that motivates measurements with real data. We report on the first observation of the empty current hemisphere events in electron-proton collisions at the HERA collider using data recorded with the H1 detector at a center-of-mass energy of 319 GeV. The fraction of inclusive neutral-current DIS events with an empty hemisphere is found to be in the selected kinematic region of GeV and inelasticity . The data sample corresponds to an integrated luminosity of 351.1 pb, sufficient to enable differential cross section measurements of these events. The results show an enhanced discriminating power at lower Bjorken- among different Monte Carlo event generator predictions
Observation and differential cross section measurement of neutral current DIS events with an empty hemisphere in the Breit frame
International audienceThe Breit frame provides a natural frame to analyze lepton-proton scattering events. In this reference frame, the parton model hard interactions between a quark and an exchanged boson defines the coordinate system such that the struck quark is back-scattered along the virtual photon momentum direction. In Quantum Chromodynamics (QCD), higher order perturbative or non-perturbative effects can change this picture drastically. As Bjorken- decreases below one half, a rather peculiar event signature is predicted with increasing probability, where no radiation is present in one of the two Breit-frame hemispheres and all emissions are to be found in the other hemisphere. At higher orders in or in the presence of soft QCD effects, predictions of the rate of these events are far from trivial, and that motivates measurements with real data. We report on the first observation of the empty current hemisphere events in electron-proton collisions at the HERA collider using data recorded with the H1 detector at a center-of-mass energy of 319 GeV. The fraction of inclusive neutral-current DIS events with an empty hemisphere is found to be in the selected kinematic region of GeV and inelasticity . The data sample corresponds to an integrated luminosity of 351.1 pb, sufficient to enable differential cross section measurements of these events. The results show an enhanced discriminating power at lower Bjorken- among different Monte Carlo event generator predictions
Measurement of the 1-jettiness event shape observable in deep-inelastic electron-proton scattering at HERA
International audienceThe H1 Collaboration reports the first measurement of the 1-jettiness event shape observable in neutral-current deep-inelastic electron-proton scattering (DIS). The observable is equivalent to a thrust observable defined in the Breit frame. The data sample was collected at the HERA collider in the years 2003-2007 with center-of-mass energy of , corresponding to an integrated luminosity of . Triple differential cross sections are provided as a function of , event virtuality , and inelasticity , in the kinematic region . Single differential cross section are provided as a function of in a limited kinematic range. Double differential cross sections are measured, in contrast, integrated over and represent the inclusive neutral-current DIS cross section measured as a function of and . The data are compared to a variety of predictions and include classical and modern Monte Carlo event generators, predictions in fixed-order perturbative QCD where calculations up to are available for or inclusive DIS, and resummed predictions at next-to-leading logarithmic accuracy matched to fixed order predictions at . These comparisons reveal sensitivity of the 1-jettiness observable to QCD parton shower and resummation effects, as well as the modeling of hadronization and fragmentation. Within their range of validity, the fixed-order predictions provide a good description of the data. Monte Carlo event generators are predictive over the full measured range and hence their underlying models and parameters can be constrained by comparing to the presented data