20 research outputs found
Population Pharmacokinetics of Trimethoprim/Sulfamethoxazole:Dosage Optimization for Patients with Renal Insufficiency or Receiving Continuous Renal Replacement Therapy
The goal of the study was to describe the population pharmacokinetics of trimethoprim, sulfamethoxazole, and N-acetyl sulfamethoxazole in hospitalized patients. Furthermore, this study used the model to optimize dosing regimens of cotrimoxazole for Pneumocystis jirovecii pneumonia and in patients with renal insufficiency or with continuous renal replacement therapy (CRRT). This was a retrospective multicenter observational cohort study based on therapeutic drug monitoring (TDM) data from hospitalized patients treated with cotrimoxazole. We developed two population pharmacokinetic (POPPK) models: a model of trimethoprim and an integrated model with both sulfamethoxazole and N-acetyl sulfamethoxazole concentrations. Monte Carlo simulations were performed to determine the optimal dosing regimen. A total of 348 measurements from 168 patients were available. The estimated glomerular filtration rate (eGFR) and CRRT were included as covariates on the clearance of all three compounds. Cotrimoxazole TID 1,920 mg and b.i.d. 2,400 mg led to sufficient exposure for infections with P. jirovecii in patients without renal insufficiency. To reach equivalent exposure, a dose reduction of 33.3% is needed in patients with an eGFR of 10 mL/minute/1.73 m2 and of 16.7% for an eGFR of 30 mL/minute/1.73 m2. N-acetyl sulfamethoxazole accumulates in patients with a reduced eGFR. CRRT increased the clearance of sulfamethoxazole, but not trimethoprim or N-acetyl sulfamethoxazole, compared with the median clearance in the population. Doubling the sulfamethoxazole dose is needed for patients on CRRT to reach equivalent exposure
SARS-CoV-2 vaccines and donor recruitment for FMT
Non peer reviewe
Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic
The COVID-19 pandemic has led to an exponential
increase in SARS-CoV-
2 infections and associated deaths,
and represents a significant challenge to healthcare
professionals and facilities. Individual countries have
taken several prevention and containment actions to
control the spread of infection, including measures
to guarantee safety of both healthcare professionals
and patients who are at increased risk of infection
from COVID-19. Faecal microbiota transplantation
(FMT) has a well-established
role in the treatment
of Clostridioides difficile infection. In the time of the
pandemic, FMT centres and stool banks are required
to adopt a workflow that continues to ensure reliable
patient access to FMT while maintaining safety and
quality of procedures. In this position paper, based on the
best available evidence, worldwide FMT experts provide
guidance on issues relating to the impact of COVID-19
on FMT, including patient selection, donor recruitment
and selection, stool manufacturing, FMT procedures,
patient follow-up
and research activities
Human transmission of blastocystis by fecal microbiota transplantation without development of gastrointestinal symptoms in recipients
Background. Patients with multiple recurrent Clostridioides difficile infections (rCDI) are treated with fecal microbiota transplantation (FMT), using feces provided by healthy donors. Blastocystis colonization of donors is considered an exclusion criterion, whereas its pathogenicity is still under debate. Methods. The introduction of molecular screening for Blastocystis sp. at our stool bank identified 2 donors with prior negative microscopies but positive polymerase chain reactions (PCRs). Potential transmission of Blastocystis sp. to patients was assessed on 16 fecal patient samples, pre- and post-FMT, by PCR and subtype (ST) analyses. In addition, clinical outcomes for the treatment of rCDI (n = 31), as well as the development of gastrointestinal symptoms, were assessed. Results. There was 1 donor who carried Blastocystis ST1, and the other contained ST3. All patients tested negative for Blastocystis prior to FMT. With a median diagnosis at 20.5 days after FMT, 8 of 16 (50%) patients developed intestinal colonization with Blastocystis, with identical ST sequences as their respective donors. Blastocystis-containing fecal suspensions were used to treat 31 rCDI patients, with an FMT success rate of 84%. This success rate was not statistically different from patients transferred with Blastocystis sp.–negative donor feces (93%, 76/82). Patients transferred with Blastocystis sp.–positive donor feces did not report any significant differences in bowel complaints in the first week, after 3 weeks, or
Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic
The COVID-19 pandemic has led to an exponential increase in SARS-CoV-2 infections and associated deaths, and represents a significant challenge to healthcare professionals and facilities. Individual countries have taken several prevention and containment actions to control the spread of infection, including measures to guarantee safety of both healthcare professionals and patients who are at increased risk of infection from COVID-19. Faecal microbiota transplantation (FMT) has a well-established role in the treatment of Clostridioides difficile infection. In the time of the pandemic, FMT centres and stool banks are required to adopt a workflow that continues to ensure reliable patient access to FMT while maintaining safety and quality of procedures. In this position paper, based on the best available evidence, worldwide FMT experts provide guidance on issues relating to the impact of COVID-19 on FMT, including patient selection, donor recruitment and selection, stool manufacturing, FMT procedures, patient follow-up and research activities.Peer reviewe
Faecal microbiota replacement to eradicate antimicrobial resistant bacteria in the intestinal tract - a systematic review.
Antimicrobial resistance is a rising threat to global health and is associated with increased mortality. Intestinal colonisation with multidrug-resistant organisms (MDRO) can precede invasive infection and facilitates spread within communities and hospitals. Novel decolonisation strategies, such as faecal microbiota transplantation (FMT), are being explored. The purpose of this review is to provide an update on how the field of FMT for MDRO decolonisation has developed during the past year and to assess the efficacy of FMT for intestinal MDRO decolonisation. RECENT FINDINGS: Since 2020, seven highly heterogenous, small, nonrandomised cohort studies and five case reports have been published. In line with previous literature, decolonisation rates ranged from 20 to 90% between studies and were slightly higher for carbapenem-resistant Enterobacteriaceae than vancomycin-resistant Enterococcus. Despite moderate decolonisation rates in two studies, a reduction in MDRO bloodstream and urinary tract infections was observed. SUMMARY AND IMPLICATIONS: Although a number of smaller cohort studies show some effect of FMT for MDRO decolonisation, questions remain regarding the true efficacy of FMT (taking spontaneous decolonisation into account), the optimal route of administration, the role of antibiotics pre and post-FMT and the efficacy in different patient populations. The observed decrease in MDRO infections post-FMT warrants further research
The need for a holistic view on management of Clostridioides difficile infection
Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc