11 research outputs found

    Microwave heating as a novel route for obtaining carbon precursors from anthracene oil

    Get PDF
    This work describes a novel route for the preparation of pitches by oxidative polymerization of an industrial anthracene oil (AO) in a microwave semi-pilot equipment consisting in a multimode applicator having a 2.45 GHz magnetron with variable microwave power. The experimental five variables of microwave heating of AO air-blowing range between 320-380 ˚C (temperature), 0.2 - 3.9 ˚C min-1 (heating rate), 1.5 - 5 h (soaking time), 16 – 20.5 % (air/AO ratio ) and 200 – 1500 g (initial weight). Their effect on the overall microwave air-blowing process is evaluated by means of a statistical analysis. A detailed characterization of the pitches has been carried out in terms of ultimate analysis, softening point, solubility parameters (toluene insolubles (TI) and quinoline insolubles (QI)) and thermogravimetric analysis. The experiments were also carried out by using conventional heating for comparative purposes. The detailed study of the electric energy consumption of the overall microwave treatment allows estimating a significant electric energy saving of about 20 % when compared to conventional heating thus representing an excellent result in the production of carbon precursors

    Carbon materials from conventional/unconventional technologies for electrochemical energy storage devices

    Get PDF
    In the last years our society has shown a growing interest on the development of both new sources of clean energy and advanced devices able to store it. In this context supercapacitors (SCs) and hybrid systems have emerged to cover the power and energy demands. Most of these electrochemical devices use carbon materials as electrodes being the activated carbons (ACs) the most commonly ones. Nonetheless graphene (G) has emerged as a promising electrode either by itself or combined with ACs in composites. This work investigates the use of a low added value coal-derived liquid (anthracene oil, AO) for the production of pitch-like carbon precursors to synthesize suitable active electrode materials (ACs, G, AC/G) in SCs and hybrid systems. In addition to the well-known oxidative thermal polymerization of AO, a new alternative based on the use of microwave heating is presented as a promising clean route to obtain such carbon precursors resulting in energy saving, shortening time and specific nonthermal effects. The characteristics of the carbon materials obtained from both conventional/ unconventional technologies are compared mainly in terms of their specific surface area, surface chemistry and electrical conductivity which would allow the design of energy storage devices with an improved electrochemical performance

    Development of a petrographic classification of fly-ash components from coal combustion and co-combustion. (An ICCP Classification System, Fly-Ash Working Group – Commission III.)

    Get PDF
    A new system for the microscopic classification of fly-ash components has been developed by the Fly-Ash Working Group, Commission III of the ICCP and is presented herein. The studied fly-ashes were obtained from the combustion of single coals of varied rank, coal blends, and coals blended with other fuels (biomass, petroleum coke), in different operating conditions and by means of different technologies. Microscopic images of the fly-ash samples were used to test the optical criteria proposed for classifying the fly-ash components. The classification system developed is based on a small number of microscopic criteria, subdivided into six independent levels or categories, three of which are directed at whole particle identification on the basis of nature, origin and type of fly-ash particle, while the other three levels are directed at the smaller section identification on the basis of character, structure and optical texture of unburned carbons. To classify the inorganic components of the fly-ash, the criterion proposed is composition in terms of metallic/non-metallic character. To establish the classification criteria the petrographers involved in the work performed three successive round robins. Evaluation of the results by using firstly descriptive statistics and then the criteria and parameters employed by the ICCP in their accreditation programs indicated that the classification of the fly-ash components was accurate and that there was only a minor bias. The main conclusion of this study was that the proposed criteria are valuable for identifying, and classifying fly-ash components and for describing the optical properties of fly-ash particles

    Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the microscopy of Carbon Materials Working Group of the ICCP

    Get PDF
    This paper describes the evaluation of petrographic textures representing the structural organization of the organic matter derived from coal and petroleum and their interaction phenomena in the making of steel electrodes, anodes and cathode blocks.This work represents the results of the Microscopy of Carbon Materials Working Group in Commission III of the International Committee for Coal and Organic Petrology between the years 2009 and 2013. The round robin exercises were run on photomicrograph samples. For textural characterization of carbon materials the existing ASTM classification system for metallurgical coke was applied.These round robin exercises involved 15 active participants from 12 laboratories who were asked to assess the coal and petroleum based carbons and to identify the morphological differences, as optical texture (isotropic/anisotropic), optical type (punctiform, mosaic, fibre, ribbon, domain), and size. Four sets of digital black and white microphotographs comprising 151 photos containing 372 fields of different types of organic matter were examined. Based on the unique ability of carbon to form a wide range of textures, the results showed an increased number of carbon occurrences which have crucial role in the chosen industrial applications.The statistical method used to evaluate the results was based on the "raw agreement indices". It gave a new and original view on the analysts' opinion by not only counting the correct answers, but also all of the knowledge and experience of the participants. Comparative analyses of the average values of the level of overall agreement performed by each analyst in the exercises during 2009-2013 showed a great homogeneity in the results, the mean value being 90.36%, with a minimum value of 83% and a maximum value of 95%

    Phosphorous and silica recovery from rice husk poultry litter ash: A sustainability analysis using a zero-waste approach

    No full text
    Phosphate rocks are a critical resource for the European Union, and alternative sources to assure the future production of a new generation of fertilizers are to be assessed. In this study, a statistical approach, combined with a sustainability evaluation for the recovery of materials from waste containing phosphorus (P), is presented. This work proposes a strategy to recover P and silica (SiO2) from rice husk poultry litter ash (RHPLA). The design of experiment (DoE) method was applied to maximize the P extraction using hydrochloric acid (HCl), with the aim to minimize the contamination that can occur by leachable heavy metals present in RHPLA, such as zinc (Zn). Two independent variables, the molar concentration of the acid, and the liquid-to-solid ratio (L/S) between the acid and RHPLA, were used in the experimental design to optimize the operating param-eters. The statistical analysis showed that a HCl concentration of 0.34 mol/L and an L/S ratio of 50 are the best conditions to recover P with low Zn contamination. Concerning the SiO2, its content in RHPLA is too low to consider the proposed recovery process as advantageous. However, based on our analysis, this process should be sustainable to recover SiO2 when its content in the starting materials is more than 80%

    Simultaneous amorphous silica and phosphorus recovery from rice husk poultry litter ash

    No full text
    The livestock sector is one of the most important sectors of the agricultural economy due to an increase in the demand for animal protein. This increase generates serious waste disposal concerns and has negative environmental consequences. Furthermore, the food production chain needs phosphorus (P), which is listed as a critical raw material due to its high demand and limited availability in Europe. Manure contains large amounts of P and other elements that may be recycled, in the frame of circular economy and “zero waste” principles, and reused as a by-product for fertilizer production and other applications. This paper focuses on the extraction and recovery of amorphous silica from rice husk poultry litter ash. Two different extraction procedures are proposed and compared, and the obtained silica is characterized. This work shows that amorphous silica can be recovered as an almost pure material rendering the residual ash free of P. It also addresses the possibility of more specific phosphorous extraction proceduresviaacid leaching

    Poultry litter ash characterisation and recovery

    No full text
    This paper reports a complete characterisation of poultry litter ash and its potential use as a heavy metal stabiliser. We propose a novel approach, in which the ashes deriving from municipal solid waste incineration (MSWI) are combined with poultry litter ash, rather than with coal combustion flue gas desulfurisation (FGD) residues. Heavy metals stabilisation was demonstrated by comparing the elemental concentrations in the leaching solutions of the starting raw and stabilised materials: leachable Pb and Zn showed a reduced solubility. The characterisation was conducted by total reflection X-ray fluorescence (TXRF), X-ray diffraction (XRD), micro-Raman spectroscopy and scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDX). The results showed that the poultry litter ash was Ca-, P-, K- and S-rich (>29 g/kg). It contained amorphous materials (i.e. fly ash economiser (FAECO) 73% and fly ash cyclone (FACYC) 61%) and soluble phases (e.g. arkanite and sylvite; up to 13% FAECO and 28% FACYC), as well as resilient crystalline (up to 2% of FAECO and FACYC) and amorphous phases (e.g. hydroxyapatite). After two months, the Pb and Zn concentrations in the leachate solutions were below the limit set by the European regulations for waste disposal (<0.2 mg/L and 1.5 mg/L, respectively). We propose a mechanism for the heavy metals stabilisation based on the carbonation process and high amounts of P, Ca and reactive amorphous phases. In conclusion, it is demonstrated that poultry litter ash can be an effective secondary source of heavy metals, allowing their immobilisation through P- and Ca-based reactive amorphous phases

    Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group – Commission III)

    No full text
    Self-heating of coal waste is a major problem in the leading coal-producing and consuming countries, independent of the recent or past coal exploitation history. The phenomenon of self-heating is dependent on many factors such as the properties of organic matter (maceral composition and rank), moisture and pyrite content, climate effects, and storage conditions (shape of the dump or compaction of the coal waste). Once deposited, coal waste undergoes oxidation, which can lead to self-heating with the overall temperatures exceeding 1000 °C. During these self-heating processes, both organic and mineral matter undergo oxidative and thermal alterations, being influenced, among others, by the rate of heating as well as by the access of air and moisture. The morphological features of organic matter in coal waste at microscopic scale reflect the thermal conditions within the waste dump. Since 2008, several exercises designed to establish a petrographic classification system of oxidatively- and thermally-altered morphological forms of organic particles present in self-heated coal waste dumps have been carried out within the Self-heating of Coal and Coal Waste Working Group (Self-Heating WG), in Commission III of the International Committee for Coal and Organic Petrology (ICCP). Based on the degree of oxidative and thermal alteration, all assessed organic particles were divided into unaltered particles (huminite, vitrinite, liptinite, and inertinite macerals), altered particles, and newly formed particles (pyrolytic carbon, bitumen, chars, graphite, and coke). Altered particles were further divided according to their optical properties (porous, massive; isotropic, anisotropic). For altered particles the following specific features were distinguished: fractures, fissures, cracks; brighter rims; darker rims; plasticised edges; bands; devolatilisation pores; paler in colour particles. The final petrographic classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps was established as a result of the successively performed Round Robin Exercises 2008–2017. The selected criteria and categories proved the high performance of the analysts characterised by a minor bias. The proposed petrographic classification system based on petrographic methods represents a useful way to characterize the undesirable phenomena occurring in coal waste dumps. Microscopic analyses and application of the petrographic classification system for organic particles affected by self-heating in coal waste offers the identification, documentation and monitoring of coal waste oxidation, self-ignition and combustion processes. It also enables a selection and application of appropriate measures to delay or even prevent undesired environmental impacts. The established classification system may assist in the air quality monitoring and assessment of burning waste dump sites and, thus, provide a relevant support in the environmental management of the disposal sites related to coal mining. The classification system can provide an important instrument for environmental protection agencies to increase the effectiveness of measures applied in fire hazard combating. The proposed classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps can be applied on self-heating coal waste or mining dumps research, being a useful tool for coal waste managements performed by environmental agencies responsible for the landfill managements and monitoring of waste dumps.The samples used for preparation of the Round Robin Exercises within the Self-heating Working Group of the ICCP were obtained within the framework of the grants 2011/03/B/ST10/06331 and N307 016 32/0493 acquired by Magdalena Misz-Kennan from the National Center of Science, Poland. The research work conducted by Jolanta Kus within the Self-heating Working Group of the ICCP was supported and is published with the permission of the Federal Institute for Geosciences and Natural Resources, Hannover, Germany

    Development of a petrographic classification system for organic particles affected by self-heating in coal waste. (An ICCP Classification System, Self-heating Working Group - Commission III)

    No full text
    Self-heating of coal waste is a major problem in the leading coal-producing and consuming countries, independent of the recent or past coal exploitation history. The phenomenon of self-heating is dependent on many factors such as the properties of organic matter (maceral composition and rank), moisture and pyrite content, climate effects, and storage conditions (shape of the dump or compaction of the coal waste). Once deposited, coal waste undergoes oxidation, which can lead to self-heating with the overall temperatures exceeding 1000 degrees C. During these self-heating processes, both organic and mineral matter undergo oxidative and thermal alterations, being influenced, among others, by the rate of heating as well as by the access of air and moisture. The morphological features of organic matter in coal waste at microscopic scale reflect the thermal conditions within the waste dump. Since 2008, several exercises designed to establish a petrographic classification system of oxidatively- and thermally-altered morphological forms of organic particles present in self-heated coal waste dumps have been carried out within the Self-heating of Coal and Coal Waste Working Group (Self-Heating WG), in Commission III of the International Committee for Coal and Organic Petrology (ICCP). Based on the degree of oxidative and thermal alteration, all assessed organic particles were divided into unaltered particles (huminite, vitrinite, liptinite, and inertinite macerals), altered particles, and newly formed particles (pyrolytic carbon, bitumen, chars, graphite, and coke). Altered particles were further divided according to their optical properties (porous, massive; isotropic, anisotropic). For altered particles the following specific features were distinguished: fractures, fissures, cracks; brighter rims; darker rims; plasticised edges; bands; devolatilisation pores; paler in colour particles. The final petrographic classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps was established as a result of the successively performed Round Robin Exercises 2008-2017. The selected criteria and categories proved the high performance of the analysts characterised by a minor bias. The proposed petrographic classification system based on petrographic methods represents a useful way to characterize the undesirable phenomena occurring in coal waste dumps. Microscopic analyses and application of the petrographic classification system for organic particles affected by self-heating in coal waste offers the identification, documentation and monitoring of coal waste oxidation, self-ignition and combustion processes. It also enables a selection and application of appropriate measures to delay or even prevent undesired environmental impacts. The established classification system may assist in the air quality monitoring and assessment of burning waste dump sites and, thus, provide a relevant support in the environmental management of the disposal sites related to coal mining. The classification system can provide an important instrument for environmental protection agencies to increase the effectiveness of measures applied in fire hazard combating. The proposed classification of oxidatively- and thermally-altered morphological forms of organic particles in coal waste dumps can be applied on self-heating coal waste or mining dumps research, being a useful tool for coal waste managements performed by environmental agencies responsible for the landfill managements and monitoring of waste dumps
    corecore