10 research outputs found

    Evasion of MAIT cell recognition by the African Salmonella Typhimurium ST313 pathovar that causes invasive disease

    Get PDF
    Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB. This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2

    A single dose of ChAdOx1 Chik vaccine induces neutralising antibodies against four chikungunya virus lineages in a phase 1 clinical trial

    Get PDF
    Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18–50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and Tcell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose

    MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella Paratyphi A

    Get PDF
    Most MAIT cell response to infection studies are of mice. Here the authors characterize MAIT cell population responses to Salmonella Paratyphi A infection of 25 human volunteers using TCR clonotype analysis and mass cytometry of pre-infection matched to post-infection samples

    Inhibition of T-cell responses by microbes and immune cells

    Get PDF

    Contact dependent suppression of CD4 T cell activation and proliferation by B cells activated through IgD cross-linking

    No full text
    Although the co-stimulatory interaction between B and T cells is well defined, recent evidence suggests that B cells also have a regulatory role. Here, we show that B cells activated using anti-IgD conjugated to dextran (α-δ-dex) directly inhibit TCR-induced CD4 T cell activation, proliferation and cytokine production. This effect was observed in CD4 T cells activated both with and without CD28 co-stimulation. T cell viability was unaffected, and the T cell suppressive effect was mediated by contact with IgD activated purified B cells and not by IL-10 or other soluble factors. This is the first evidence of IgD activated B cells mediating inhibition of activation and proliferation of CD4 T cells in humans. This article is protected by copyright. All rights reserved.</p

    Clonal analysis of Salmonella-specific effector T cells reveals serovar-specific and cross-reactive T cell responses

    No full text
    To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell–receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single–amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell–vaccination strategies against Salmonella
    corecore