136 research outputs found

    COORDINATION IN TRACK & FIELD SPRINTERS WHILE PERFORMING THE COUNTERMOVEMENT JUMP

    Get PDF
    The aim of this study was to assess coordination, coordination variability and their evolution with time, during the countermovement jump. For this purpose a population of track & field sprinters was analysed through a Dynamic Systems approach. Five testing sessions over the year were considered. The kinematics of lower limbs was recorded by an optoelectronic system, and the continuous relative phase of the hip-knee and knee-ankle joints was considered. Results showed different behaviours for the two couplings across the functional phases of the movement, with an increased variability and a less in-phase relationship during transitions between phases. No relevant changes were reported over the subsequent testing sessions

    Cervical spine injuries: A whole-body musculoskeletal model for the analysis of spinal loading

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cervical spine trauma from sport or traffic collisions can have devastating consequences for individuals and a high societal cost. The precise mechanisms of such injuries are still unknown as investigation is hampered by the difficulty in experimentally replicating the conditions under which these injuries occur. We harness the benefits of computer simulation to report on the creation and validation of i) a generic musculoskeletal model (MASI) for the analyses of cervical spine loading in healthy subjects, and ii) a population-specific version of the model (Rugby Model), for investigating cervical spine injury mechanisms during rugby activities. The musculoskeletal models were created in OpenSim, and validated against in vivo data of a healthy subject and a rugby player performing neck and upper limb movements. The novel aspects of the Rugby Model comprise i) population-specific inertial properties and muscle parameters representing rugby forward players, and ii) a custom scapula-clavicular joint that allows the application of multiple external loads. We confirm the utility of the developed generic and population-specific models via verification steps and validation of kinematics, joint moments and neuromuscular activations during rugby scrummaging and neck functional movements, which achieve results comparable with in vivoand in vitrodata. The Rugby Model was validated and used for the first time to provide insight into anatomical loading and cervical spine injury mechanisms related to rugby, whilst the MASI introduces a new computational tool to allow investigation of spinal injuries arising from other sporting activities, transport, and ergonomic applications. The models used in this study are freely available at simtk.org and allow to integrate in silico analyses with experimental approaches in injury prevention.Funding: This project is funded by the Rugby Football Union (RFU) Injured Players Foundation. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Within-day repeatability of coordination variability measures across the running gait cycle

    Get PDF
    The purpose of this study was to identify the within-day repeatability of coordination variability calculated using a velocity ellipse area method. Twenty participants attended two data collection sessions within 6 hours. At each session, a marker based motion capture system measured kinematics whilst participants ran at 12 km/h on a treadmill. The minimum detectable change in coordination variability was calculated for four commonly researched joint/segment couplings. Of the couplings investigated, thigh flexion/extension – shank flexion/extension and hip flexion/extension – knee flexion/extension were most repeatable. But in the most repeatable coupling, an average change of 75% across the gait cycle would be required between sessions to detect a meaningful change. This indicated poor repeatability and possible causes are discussed

    Estimating offspring production using capture-mark-recapture and genetic methods in red squirrels.

    Get PDF
    Reproductive rate is a key demographic parameter of life history and population ecology. In traditional population-ecology studies of small mammals, this and other vital rates are inferred from capture-mark-recapture (CMR) data. However, CMR assumes that immigrants at first capture can be distinguished from unmarked locally born offspring, an assumption not always met. We verified CMR estimates of locally born red squirrel (Sciurus vulgaris) offspring as a measure of reproductive rate, with candidate offspring (CO)\u2013candidate parent (mothers, CPs) assignment by CERVUS, using ten DNA microsatellite loci. Seventytwo of 122 candidate offspring (59%) were assigned to 52 of 125 CPs in six populations. Estimates of mean litter size were 1.5 young (range 1\u20133). The 50 CO (41%) not assigned to a reproducing female in the study site were considered immigrants. Parentage assignment also provided evidence of dispersal between two of our sites. Overall, CMR and CERVUS agreed in 77% of cases. Considering only the 55 juveniles determined as locally born by CMR, 50 (91%) were also assigned as local offspring with CERVUS. The main discrepancy between the two methods was that 22 subadult squirrels classified immigrants by CMR, were assigned by CERVUS to females which had reproduced in our sites. It is concluded that although in our study system agreement between CMR and CERVUS in determining local offspring was high, using genetic parentage assignment helped to correctly classify some subadults, considered immigrants by CMR, as locally born. Hence, in largescale demographic studies, combining CMR with parentage assignment will allow more precise estimates of reproduction and dispersal

    Musculoskeletal modelling of the human cervical spine for the investigation of injury mechanisms during axial impacts

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record.All relevant data are available at Figshare [https://figshare.com/projects/SILVESTROS_PLOS_ONE_SUPPORTING_DOCUMENTS/58280] and musculoskeletal models and relevant project information is available on the OpenSim SimTK repository [https://simtk.org/projects/csibath].Head collisions in sport can result in catastrophic injuries to the cervical spine. Musculoskeletal modelling can help analyse the relationship between motion, external forces and internal loads that lead to injury. However, impact specific musculoskeletal models are lacking as current viscoelastic values used to describe cervical spine joint dynamics have been obtained from unrepresentative quasi-static or static experiments. The aim of this study was to develop and validate a cervical spine musculoskeletal model for use in axial impacts. Cervical spine specimens (C2-C6) were tested under measured sub-catastrophic loads and the resulting 3D motion of the vertebrae was measured. Specimen specific musculoskeletal models were then created and used to estimate the axial and shear viscoelastic (stiffness and damping) properties of the joints through an optimisation algorithm that minimised tracking errors between measured and simulated kinematics. A five-fold cross validation and a Monte Carlo sensitivity analysis were conducted to assess the performance of the newly estimated parameters. The impact-specific parameters were integrated in a population specific musculoskeletal model and used to assess cervical spine loads measured from Rugby union impacts compared to available models. Results of the optimisation showed a larger increase of axial joint stiffness compared to axial damping and shear viscoelastic parameters for all models. The sensitivity analysis revealed that lower values of axial stiffness and shear damping reduced the models performance considerably compared to other degrees of freedom. The impact-specific parameters integrated in the population specific model estimated more appropriate joint displacements for axial head impacts compared to available models and are therefore more suited for injury mechanism analysis.Rugby Football Union (RFU) Injured Players Foundatio

    The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review

    Get PDF
    Wearable technologies are often indicated as tools that can enable the in-field collection of quantitative biomechanical data, unobtrusively, for extended periods of time, and with few spatial limitations. Despite many claims about their potential for impact in the area of injury prevention and management, there seems to be little attention to grounding this potential in biomechanical research linking quantities from wearables to musculoskeletal injuries, and to assessing the readiness of these biomechanical approaches for being implemented in real practice. We performed a systematic scoping review to characterise and critically analyse the state of the art of research using wearable technologies to study musculoskeletal injuries in sport from a biomechanical perspective. A total of 4952 articles were retrieved from the Web of Science, Scopus, and PubMed databases; 165 were included. Multiple study features—such as research design, scope, experimental settings, and applied context—were summarised and assessed. We also proposed an injury-research readiness classification tool to gauge the maturity of biomechanical approaches using wearables. Five main conclusions emerged from this review, which we used as a springboard to propose guidelines and good practices for future research and dissemination in the field

    Home range dynamics of mountain hares (Lepus timidus) in the Swiss Alps.

    Get PDF
    Little is known on the ecology and behaviour of the alpine mountain hare (Lepus timidus). Between 1996 and 1997, we analysed by radiotracking the pattern of space use of 8 mountain hares from the Swiss Alps. We estimated home range size using both the kernel density estimator and the minimum convex polygon. We found smaller ranges (38 ha) compared to those reported for the species in boreal or arctic habitats, but similar to ranges in Scotland. Hares did not use a centre of major activity (core area) and showed high home range overlap, confirming their non-territorial behaviour. Smaller ranges were used during winter compared to the other seasons, whilst no difference in size was found between sexes

    Kinematic characteristics of elite men's 50 km race walking.

    Get PDF
    Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= -0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue

    Open Source evaluation of kilometric indexes of abundance.

    Get PDF
    Kilometric Abundance Index (KAI) is a common measure used in wildlife studies because it allows a straightforward comparison of species abundance in different sites or at different times. KAI expresses the ratio of the total number of individuals (or of signs of presence) observed along a transect by the total transect length covered at each site. v.transect.kia is a new tool for GRASS GIS, developed for automating the evaluation of KAI, reducing the risk of manual errors especially when handling large datasets. It can also split the transects according to one environmental variable (typically habitat type) and evaluate true 3D transect length. It calculates KAI using a point map of sightings and saves the results in the attribute table, the output can be displayed in any GIS or used for further statistical analysis. The tool has been tested on field data from Northern Italy for mountain hare (Lepus timidus), allowing a first wide-area estimate
    • …
    corecore