6 research outputs found

    A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies

    Get PDF
    Little information exists on the occurrence and the ultimate fate of pharmaceuticals in the water bodies in India despite being one of the world leaders in pharmaceutical production and consumption. This paper has reviewed 19 published reports of pharmaceutical occurrence in the aquatic environment in India [conventional activated sludge wastewater treatment plants (WTPs), hospital WTPs, rivers, and groundwater]. Carbamazepine (antipsychoactive), atenolol (antihypertensive), triclocarban and triclosan (antimicrobials), trimethoprim and sulfamethoxazole (antibacterials), ibuprofen and acetaminophen (analgesics), and caffeine (stimulant) are the most commonly detected at higher concentrations in Indian WTPs that treat predominantly the domestic sewage. The concentration of ciprofloxacin, sulfamethoxazole, amoxicillin, norfloxacin, and ofloxacin in Indian WTPs were up to 40 times higher than that in other countries in Europe, Australia, Asia, and North America. A very few studies in Indian rivers reported the presence of ciprofloxacin, enoxacin, ketoprofen, erythromycin, naproxen, ibuprofen, diclofenac and enrofloxacin. Similar compounds were reported in rivers in China, indicating a similar usage pattern in both of these developing countries. In a study reported from an open well in southern India, the groundwater showed the presence of cetirizine, ciprofloxacin, enoxacin, citalopram and terbinafine, which was close to a WTP receiving effluents from pharmaceutical production

    Groundwater resource vulnerability and spatial variability of nitrate contamination: Insights from high density tubewell monitoring in a hard rock aquifer

    No full text
    International audienceAgriculture has been increasingly relying on groundwater irrigation for the last decades, leading to severe groundwater depletion and/or nitrate contamination. Understanding the links between nitrate concentration and groundwater resource is a prerequisite for assessing the sustainability of irrigated systems. The Berambadi catchment (ORE-BVET/Kabini Critical Zone Observatory) in Southern India is a typical example of intensive irrigated agriculture and then an ideal site to study the relative influences of land use, management practices and aquifer properties on NO3 spatial distribution in groundwater. The monitoring of >200 tube wells revealed nitrate concentrations from 1 to 360 mg/L. Three configurations of groundwater level and elevation gradient were identified: i) NO3 hot spots associated to deep groundwater levels (30-60 m) and low groundwater elevation gradient suggest small groundwater reserve with absence of lateral flow, then degradation of groundwater quality due to recycling through pumping and return flow; ii) high groundwater elevation gradient, moderate NO3 concentrations suggest that significant lateral flow prevented NO3 enrichment; iii) low NO3 concentrations, low groundwater elevation gradient and shallow groundwater indicate a large reserve. We propose that mapping groundwater level and gradient could be used to delineate zones vulnerable to agriculture intensification in catchments where groundwater from low-yielding aquifers is the only source of irrigation. Then, wells located in low groundwater elevation gradient zones are likely to be suitable for assessing the impacts of local agricultural systems, while wells located in zones with high elevation gradient would reflect the average groundwater quality of the catchment, and hence should be used for regional mapping of groundwater quality. Irrigatiori with NO3 concentrated groundwater induces a "hidden" input of nitrogen to the crop which can reach 200 kgN/ha/yr in hotspot areas, enhancing groundwater contamination. Such fluxes, once taken into account in fertilizer management, would allow optimizing fertilizer consumption and mitigate high nitrate concentrations in groundwater
    corecore