14,895 research outputs found
Fabrication process of a high temperature polymer matrix engine duct
The process that was used in the molding of an advanced composite outer by-pass duct planned for the F404 engine is discussed. This duct was developed as a potential replacement for the existing titanium duct in order to reduce both the weight and cost of the duct. The composite duct is now going into the manufacturing technology portion of the program. The duct is fabricated using graphite cloth impregnated with the PMR-15 matrix system
The thalamic reticular nucleus: a functional hub for thalamocortical network dysfunction in schizophrenia and a target for drug discovery
The thalamus (comprising many distinct nuclei) plays a key role in facilitating sensory discrimination and cognitive processes through connections with the cortex. Impaired thalamocortical processing has long been considered to be involved in schizophrenia. In this review we focus on the thalamic reticular nucleus (TRN) providing evidence for it being an important communication hub between the thalamus and cortex and how it may play a key role in the pathophysiology of schizophrenia. We first highlight the functional neuroanatomy, neurotransmitter localisation and physiology of the TRN. We then present evidence of the physiological roles of the TRN in relation to oscillatory activity, cognition and behaviour. Next we discuss the role of the TRN in rodent models of risk factors for schizophrenia (genetic and pharmacological) and provide evidence for TRN deficits in schizophrenia. Finally we discuss new drug targets for schizophrenia in relation to restoring TRN circuitry dysfunction
Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence
Intermittent large-scale high-shear flows are found to occur frequently and
spontaneously in direct numerical simulations of statistically stationary
turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic
steady-state of the system is sustained by convective driving of the velocity
field and small-scale dynamo action. The intermittent emergence of flow
structures with strong velocity and magnetic shearing generates magnetic energy
at an elevated rate over time-scales longer than the characteristic time of the
large-scale convective motion. The resilience of magnetic energy amplification
suggests that intermittent shear-bursts are a significant driver of dynamo
action in turbulent magnetoconvection
Structure/permeability relationships of silicon-containing polyimides
The permeability to H2, O2, N2, CO2 and CH4 of three silicone-polyimide random copolymers and two polyimides containing silicon atoms in their backbone chains, was determined at 35.0 C and at pressures up to about 120 psig (approximately 8.2 atm). The copolymers contained different amounts of BPADA-m-PDA and amine-terminated poly (dimethyl siloxane) and also had different numbers of siloxane linkages in their silicone component. The polyimides containing silicon atoms (silicon-modified polyimides) were SiDA-4,4'-ODA and SiDA-p-PDA. The gas permeability and selectivity of the copolymers are more similar to those of their silicone component than of the polyimide component. By contrast, the permeability and selectivity of the silicon-modified polyimides are more similar to those of their parent polyimides, PMDA-4,4'-ODA and SiDA-p-PDA. The substitution of SiDA for the PMDA moiety in a polyimide appears to result in a significant increase in gas permeability, without a correspondingly large decrease in selectivity. The potential usefulness of the above polymers and copolymers as gas separation membranes is discussed
Hydration and mobility of HO-(aq)
The hydroxide anion plays an essential role in many chemical and biochemical
reactions. But a molecular-scale description of its hydration state, and hence
also its transport, in water is currently controversial. The statistical
mechanical quasi-chemical theory of solutions suggests that HO[H2O]3- is the
predominant species in the aqueous phase under standard conditions. This result
is in close agreement with recent spectroscopic studies on hydroxide water
clusters, and with the available thermodynamic hydration free energies. In
contrast, a recent ab initio molecular dynamics simulation has suggested that
HO[H_2O]4- is the only dominant aqueous solution species. We apply adiabatic ab
initio molecular dynamics simulations, and find good agreement with both the
quasi-chemical theoretical predictions and experimental results. The present
results suggest a picture that is simpler, more traditional, but with
additional subtlety. These coordination structures are labile but the
tri-coordinate species is the prominent case. This conclusion is unaltered with
changes in the electronic density functional. No evidence is found for
rate-determining activated inter-conversion of a HO[H2O]4- trap structure to
HO[H2O]3-, mediating hydroxide transport. The view of HO- diffusion as the
hopping of a proton hole has substantial validity, the rate depending largely
on the dynamic disorder of the water hydrogen-bond network.Comment: 7 pages, 5 figures, additional results include
XMM-Newton detection of two clusters of galaxies with strong SPT Sunyaev-Zel'dovich effect signatures
We report on the discovery of two galaxy clusters, SPT-CL J2332-5358 and
SPT-CL J2342-5411, in X-rays. These clusters were also independently detected
through their Sunyaev-Zel'dovich effect by the South Pole Telescope, and
confirmed in the optical band by the Blanco Cosmology Survey. They are thus the
first clusters detected under survey conditions by all major cluster search
approaches. The X-ray detection is made within the frame of the XMM-BCS cluster
survey utilizing a novel XMM-Newton mosaic mode of observations. The present
study makes the first scientific use of this operation mode. We estimate the
X-ray spectroscopic temperature of SPT-CL J2332-5358 (at redshift z=0.32) to T
= 9.3 (+3.3/-1.9) keV, implying a high mass, M_{500} = 8.8 +/- 3.8 \times
10^{14} M_{sun}. For SPT-CL J2342-5411, at z=1.08, the available X-ray data
doesn't allow us to directly estimate the temperature with good confidence.
However, using our measured luminosity and scaling relations we estimate that T
= 4.5 +/- 1.3 keV and M_{500} = 1.9 +/- 0.8 \times 10^{14} M_{sun}. We find a
good agreement between the X-ray masses and those estimated from the
Sunyaev-Zel'dovich effect.Comment: Submitted to A&A, 8 pages, 5 figures, 1 tabl
A system of relational syllogistic incorporating full Boolean reasoning
We present a system of relational syllogistic, based on classical
propositional logic, having primitives of the following form:
Some A are R-related to some B;
Some A are R-related to all B;
All A are R-related to some B;
All A are R-related to all B.
Such primitives formalize sentences from natural language like `All students
read some textbooks'. Here A and B denote arbitrary sets (of objects), and R
denotes an arbitrary binary relation between objects. The language of the logic
contains only variables denoting sets, determining the class of set terms, and
variables denoting binary relations between objects, determining the class of
relational terms. Both classes of terms are closed under the standard Boolean
operations. The set of relational terms is also closed under taking the
converse of a relation. The results of the paper are the completeness theorem
with respect to the intended semantics and the computational complexity of the
satisfiability problem.Comment: Available at
http://link.springer.com/article/10.1007/s10849-012-9165-
Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection
We investigate the utility of the convex hull of many Lagrangian tracers to
analyze transport properties of turbulent flows with different anisotropy. In
direct numerical simulations of statistically homogeneous and stationary
Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD
Boussinesq convection a comparison with Lagrangian pair dispersion shows that
convex hull statistics capture the asymptotic dispersive behavior of a large
group of passive tracer particles. Moreover, convex hull analysis provides
additional information on the sub-ensemble of tracers that on average disperse
most efficiently in the form of extreme value statistics and flow anisotropy
via the geometric properties of the convex hulls. We use the convex hull
surface geometry to examine the anisotropy that occurs in turbulent convection.
Applying extreme value theory, we show that the maximal square extensions of
convex hull vertices are well described by a classic extreme value
distribution, the Gumbel distribution. During turbulent convection,
intermittent convective plumes grow and accelerate the dispersion of Lagrangian
tracers. Convex hull analysis yields information that supplements standard
Lagrangian analysis of coherent turbulent structures and their influence on the
global statistics of the flow.Comment: 18 pages, 10 figures, preprin
- …