138 research outputs found

    Trade Remedy Litigation--Choice of Forum and Choice of Law

    Get PDF

    Drug-responsive autism phenotypes in the 16p11.2 deletion mouse model: a central role for gene-environment interactions

    Get PDF
    There are no current treatments for autism, despite its high prevalence. Deletions of chromosome 16p11.2 dramatically increase risk for autism, suggesting that mice with an equivalent genetic rearrangement may offer a valuable model for the testing of novel classes of therapeutic drug. 16p11.2 deletion (16p11.2 DEL) mice and wild-type controls were assessed using an ethological approach, with 24 h monitoring of activity and social interaction of groups of mice in a home-cage environment. The ability of the excitation/inhibition modulator N-acetyl cysteine (NAC) and the 5-HT1B/1D/1F receptor agonist eletriptan to normalise the behavioural deficits observed was tested. 16p11.2 DEL mice exhibited largely normal behaviours, but, following the stress of an injection, showed hyperlocomotion, reduced sociability, and a strong anxiolytic phenotype. The hyperactivity and reduced sociability, but not the suppressed anxiety, were effectively attenuated by both NAC and eletriptan. The data suggest that 16p11.2 DEL mice show an autism-relevant phenotype that becomes overt after an acute stressor, emphasising the importance of gene-environmental interactions in phenotypic analysis. Further, they add to an emerging view that NAC, or 5-HT1B/1D/1F receptor agonist treatment, may be a promising strategy for further investigation as a future treatment

    Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    Get PDF
    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity

    Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks

    Get PDF
    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Genetics and prognostication in splenic marginal zone lymphoma: revelations from deep sequencing

    No full text
    PURPOSE: Mounting evidence supports the clinical significance of gene mutations and immunogenetic features in common mature B-cell malignancies.EXPERIMENTAL DESIGN: We undertook a detailed characterization of the genetic background of splenic marginal zone lymphoma (SMZL), using targeted re-sequencing and explored potential clinical implications in a multinational cohort of 175 SMZL patients.RESULTS: We identified recurrent mutations in TP53 (16%), KLF2 (12%), NOTCH2 (10%), TNFAIP3 (7%), MLL2 (11%), MYD88 (7%) and ARID1A (6%), all genes known to be targeted by somatic mutation in SMZL. KLF2 mutations were early, clonal events, enriched in patients with del(7q) and IGHV1-2*04 B-cell receptor immunoglobulins, and were associated with a short median time-to-first-treatment (0.12 vs. 1.11 yrs; P=0.01). In multivariate analysis mutations in NOTCH2 (HR 2.12, 95%CI 1.02-4.4, P=0.044) and 100% germline IGHV gene identity (HR 2.19, 95%CI 1.05-4.55, P=0.036) were independent markers of short time-to-first-treatment, while TP53 mutations were an independent marker of short overall survival (HR 2.36, 95% CI 1.08-5.2, P=0.03).CONCLUSIONS: We identify key associations between gene mutations and clinical outcome, demonstrating for the first time that NOTCH2 and TP53 gene mutations are independent markers of reduced treatment-free and overall survival, respectively.<br/

    Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice

    Get PDF
    Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na(+),K(+)-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+),K(+)-ATPase α3, including upon the K(+) pore and predicted K(+) binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+),K(+)-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC

    Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides

    Get PDF
    Photosynthesis converts absorbed solar energy to a protonmotive force, which drives ATP synthesis. The membrane network of chlorophyll–protein complexes responsible for light absorption, photochemistry and quinol (QH2) production has been mapped in the purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides using atomic force microscopy (AFM), but the membrane location of the cytochrome bc1 (cytbc1) complexes that oxidise QH2 to quinone (Q) to generate a protonmotive force is unknown. We labelled cytbc1 complexes with gold nanobeads, each attached by a Histidine10 (His10)-tag to the C-terminus of cytc1. Electron microscopy (EM) of negatively stained chromatophore vesicles showed that the majority of the cytbc1 complexes occur as dimers in the membrane. The cytbc1 complexes appeared to be adjacent to reaction centre light-harvesting 1-PufX (RC–LH1–PufX) complexes, consistent with AFM topographs of a gold-labelled membrane. His-tagged cytbc1 complexes were retrieved from chromatophores partially solubilised by detergent; RC–LH1–PufX complexes tended to co-purify with cytbc1 whereas LH2 complexes became detached, consistent with clusters of cytbc1 complexes close to RC–LH1–PufX arrays, but not with a fixed, stoichiometric cytbc1–RC–LH1–PufX supercomplex. This information was combined with a quantitative mass spectrometry (MS) analysis of the RC, cytbc1, ATP synthase, cytaa3 and cytcbb3 membrane protein complexes, to construct an atomic-level model of a chromatophore vesicle comprising 67 LH2 complexes, 11 LH1–RC–PufX dimers & 2 RC–LH1–PufX monomers, 4 cytbc1 dimers and 2 ATP synthases. Simulation of the interconnected energy, electron and proton transfer processes showed a half-maximal ATP turnover rate for a light intensity equivalent to only 1% of bright sunlight. Thus, the photosystem architecture of the chromatophore is optimised for growth at low light intensities

    Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer

    Get PDF
    BACKGROUND: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. METHODOLOGY/PRINCIPAL FINDINGS: With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. CONCLUSIONS/SIGNIFICANCE: These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance
    • …
    corecore