17 research outputs found

    AML associated oncofusion proteins PML-RARA, AML1-ETO and CBFB-MYH11 target RUNX/ETS-factor binding sites to modulate H3ac levels and drive leukemogenesis

    Get PDF
    Chromosomal translocations are one of the hallmarks of acute myeloid leukemia (AML), often leading to gene fusions and expression of an oncofusion protein. Over recent years it has become clear that most of the AML associated oncofusion proteins molecularly adopt distinct mechanisms for inducing leukemogenesis. Still these unique molecular properties of the chimeric proteins converge and give rise to a common pathogenic molecular mechanism. In the present study we compared genome-wide DNA binding and transcriptome data associated with AML1-ETO, CBFB-MYH11 and PML-RARA oncofusion protein expression to identify unique and common features. Our analyses revealed targeting of oncofusion binding sites to RUNX1 and ETS-factor occupied genomic regions. In addition, it revealed a highly comparable global histone acetylation pattern, similar expression of common target genes and related enrichment of several biological pathways critical for maintenance of AML, suggesting oncofusion proteins deregulate common gene programs despite their distinct binding signatures and mechanisms of action.Peer reviewe

    Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation

    Get PDF
    Rationale: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. Objective: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. Methods and Results: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. Conclusions: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease

    A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia

    Get PDF
    Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function

    Transcriptional and epigenetic regulation of macrophages in atherosclerosis

    No full text
    Monocytes and macrophages provide defence against pathogens and danger signals. These cells respond to stimulation in a fast and stimulus-specific manner by utilizing complex cascaded activation by lineage-determining and signal-dependent transcription factors. The complexity of the functional response is determined by interactions between triggered transcription factors and depends on the microenvironment and interdependent signalling cascades. Dysregulation of macrophage phenotypes is a major driver of various diseases such as atherosclerosis, rheumatoid arthritis and type 2 diabetes mellitus. Furthermore, exposure of monocytes, which are macrophage precursor cells, to certain stimuli can lead to a hypo-inflammatory tolerized phenotype or a hyper-inflammatory trained phenotype in a macrophage. In atherosclerosis, macrophages and monocytes are exposed to inflammatory cytokines, oxidized lipids, cholesterol crystals and other factors. All these stimuli induce not only a specific transcriptional response but also interact extensively, leading to transcriptional and epigenetic heterogeneity of macrophages in atherosclerotic plaques. Targeting the epigenetic landscape of plaque macrophages can be a powerful therapeutic tool to modulate pro-atherogenic phenotypes and reduce the rate of plaque formation. In this Review, we discuss the emerging role of transcription factors and epigenetic remodelling in macrophages in the context of atherosclerosis and inflammation, and provide a comprehensive overview of epigenetic enzymes and transcription factors that are involved in macrophage activation

    Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells

    No full text
    In order to identify regulators of foam cells, we studied the H3K27 demethylase Kdm6b (also known as Jmjd3), a known regulator of macrophages, in controlling the transcriptional profile of foam cells. Foam cells from Kdm6b-deleted or Kdm6b wild-type mice were isolated and used for RNA-sequencing analysis. Pathway analysis revealed that pro-fibrotic pathways were strongly suppressed in Kdm6b-deleted foam cells. Analysis of published datasets showed that foam cell formation induces these pro-fibrotic characteristics. Overlay of both datasets indicated that fibrotic genes which are induced upon foam cell formation, are reduced in the absence of Kdm6b. These data suggest that foam cell formation induces a pro-fibrotic gene signature in a Kdm6b-dependent manner. We identified Kdm6b as a novel regulator of the pro-fibrotic signature of peritoneal foam cell

    Potent lipoprotein(a) lowering following apolipoprotein(a) antisense treatment reduces the pro-inflammatory activation of circulating monocytes in patients with elevated lipoprotein(a)

    No full text
    Aims Elevated lipoprotein(a) [Lp(a)] is strongly associated with an increased cardiovascular disease (CVD) risk. We previously reported that pro-inflammatory activation of circulating monocytes is a potential mechanism by which Lp(a) mediates CVD. Since potent Lp(a)-lowering therapies are emerging, it is of interest whether patients with elevated Lp(a) experience beneficial anti-inflammatory effects following large reductions in Lp(a). Methods and results Using transcriptome analysis, we show that circulating monocytes of healthy individuals with elevated Lp(a), as well as CVD patients with increased Lp(a) levels, both have a pro-inflammatory gene expression profile. The effect of Lp(a)-lowering on gene expression and function of monocytes was addressed in two local sub-studies, including 14 CVD patients with elevated Lp(a) who received apolipoprotein(a) [apo(a)] antisense (AKCEA-APO(a)-LRx) (NCT03070782), as well as 18 patients with elevated Lp(a) who received proprotein convertase subtilisin/kexin type 9 antibody (PCSK9ab) treatment (NCT02729025). AKCEA-APO(a)-LRx lowered Lp(a) by 47% and reduced the pro-inflammatory gene expression in monocytes of CVD patients with elevated Lp(a), which coincided with a functional reduction in transendothelial migration capacity of monocytes ex vivo (-17%, P < 0.001). In contrast, PCSK9ab treatment lowered Lp(a) by 16% and did not alter transcriptome nor functional properties of monocytes, despite an additional reduction of 65% in low-density lipoprotein cholesterol (LDL-C). Conclusion Potent Lp(a)-lowering following AKCEA-APO(a)-LRx, but not modest Lp(a)-lowering combined with LDL-C reduction following PCSK9ab treatment, reduced the pro-inflammatory state of circulating monocytes in patients with elevated Lp(a). These ex vivo data support a beneficial effect of large Lp(a) reductions in patients with elevated Lp(a)

    Peritoneal macrophages have an impaired immune response in obesity which can be reversed by subsequent weight loss

    Get PDF
    Introduction Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. Research design and methods Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. Results and conclusions In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients

    Myeloid Kdm6b deficiency results in advanced atherosclerosis

    No full text
    Background and aims: Atherosclerosis is a lipid-driven chronic inflammatory disorder of the arteries, and monocytes and macrophages play a central role in this process. Within the atherosclerotic lesion, macrophages can scavenge modified lipids and become the so-called foam cells. We previously reported that the epigenetic enzyme Kdm6b (also known as Jmjd3) controls the pro-fibrotic transcriptional profile of peritoneal foam cells. Given the importance of these cells in atherosclerosis, we now studied the effect of myeloid Kdm6b on disease progression. Methods: Bone marrow of myeloid Kdm6b deficient (Kdm6bdel) mice or wild type littermates (Kdm6bwt) was transplanted to lethally irradiated Ldlr−/− mice fed a high fat diet for 9 weeks to induce atherosclerosis. Results: Lesion size was similar in Kdm6bwt and Kdm6bdel transplanted mice. However, lesions of Kdm6bdel mice contained more collagen and were more necrotic. Pathway analysis on peritoneal foam cells showed that the pathway involved in leukocyte chemotaxis was most significantly upregulated. Although macrophage and neutrophil content was similar after 9 weeks of high fat diet feeding, the relative increase in collagen content and necrosis revealed that atherosclerotic lesions in Kdm6bdel mice progress faster. Conclusion: Myeloid Kdm6b deficiency results in more advanced atherosclerosis

    The Hematopoietic Transcription Factors RUNX1 and ERG Prevent AML1-ETO Oncogene Overexpression and Onset of the Apoptosis Program in t(8;21) AMLs

    Get PDF
    The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells

    Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation

    No full text
    Rationale: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. Objective: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. Methods and Results: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. Conclusions: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease
    corecore