144 research outputs found

    Immunotoxicology: Modulation of the Immune System by Xenobiotics

    Get PDF
    Starting wih a definition of immunity, this review describes general mechanisms by which immune system is modulated and details several immunotoxicological screening methods to assess the immumologic and host resistance alterations following chemical exposure. Among a variety of immuno toxic compounds known, only four representative compounds namely o-chloro benzylidine malononitrile (CS), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), chloroquine, 1,3 bis (2-chloroethyl) 1-nitrosourea (BCNU) have been chosen for an elaborate discussion

    Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells

    Get PDF
    Multiple sclerosis (MS) is a chronic debilitating autoimmune disease without a cure. While the use of marijuana cannabinoids for MS has recently been approved in some countries, the precise mechanism of action leading to attenuate neuroinflammation is not clear. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory properties of cannabidiol (CBD), a non-psychoactive cannabinoid. Treatment with CBD caused attenuation of EAE disease paradigms as indicated by a significant reduction in clinical scores of paralysis, decreased T cell infiltration in the central nervous system, and reduced levels of IL-17 and IFNγ. Interestingly, CBD treatment led to a profound increase in myeloid-derived suppressor cells (MDSCs) in EAE mice when compared to the vehicle-treated EAE controls. These MDSCs caused robust inhibition of MOG-induced proliferation of T cells in vitro. Moreover, adoptive transfer of CBD-induced MDSCs ameliorated EAE while MDSC depletion reversed the beneficial effects of CBD treatment, thereby conclusively demonstrating that MDSCs played a crucial role in CBD-mediated attenuation of EAE. Together, these studies demonstrate for the first time that CBD treatment may ameliorate EAE through induction of immunosuppressive MDSCs

    Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells

    Get PDF
    Obesity is characterized by chronic low-grade inflammation that contributes to development of cardiometabolic disorders. Cannabinoid receptor 1 (CB1) antagonists attenuate diet-induced obesity (DIO) and related inflammation, although the precise anti-inflammatory mechanisms involved have not been fully explored. In the current study we used a mouse model of DIO intervention to determine the microRNA (miRNA, miR)-mediated anti-obesity and anti-inflammatory effects of the CB1 antagonist, AM251. DIO mice that were fed high-fat diet (HFD) for 12 weeks were treated with AM251 (10 mg/kg) for an additional 4 weeks. HFD + AM251 mice experienced rapid and prolonged weight loss and reduced inflammatory M1 adipose tissue macrophage (ATM) infiltration. To investigate miRNA-mediated regulation of ATMs, F4/80+ cells from stromal vascular fractions (SVF) of epididymal fat were subjected to miR microarray analysis. Several miRs were differentially expressed in AM251-treated mice that were independent of calorie restriction. Prominently, miR-30e-5p was upregulated in ATMs from HFD + AM251 mice while the miR-30e-5p target, DLL4, was downregulated. Consistent with a decrease in DLL4-Notch signaling, fat storage and pro-inflammatory cytokine/chemokine expression was reduced following AM251 treatment. Furthermore, we found that AM251-treated macrophages can suppress DLL4-mediated Th1 polarization in CD4+ T cells. Together these data demonstrate that blocking CB1 receptors leads to upregulation of miR-30e-5p and down regulation of DLL4 in ATMs, which in turn suppress DLL4-Notch signaling-induced polarization of inflammatory Th1 cells and adipocyte energy storage. This combined effect of ATMs and T cells leads to an anti-inflammatory state and attenuation of DIO. These data support therapeutic potential of miR-30 in the treatment of cardiometabolic disorders

    Immune and Microrna Responses To Infection and Indole-3-Carbinol During Colitis

    Get PDF
    BACKGROUND: Indole-3-carbinol (I3C) and other aryl hydrocarbon receptor agonists are known to modulate the immune system and ameliorate various inflammatory and autoimmune diseases in animal models, including colitis induced by dextran sulfate sodium (DSS). MicroRNAs (miRNAs) are also gaining traction as potential therapeutic agents or diagnostic elements. Enterohepatic (EHH) species are associated with an increased risk of inflammatory bowel disease, but little is known about how these species affect the immune system or response to treatment. AIM: To determine whether infection with an EHH species alters the response to I3C and how the immune and miRNA responses of an EHH species compare with responses to DSS and inflammatory bowel disease. METHODS: We infected C57BL/6 mice with (), with and without DSS and I3C treatment. Pathological responses were evaluated by histological examination, symptom scores, and cytokine responses. MiRNAs analysis was performed on mesenteric lymph nodes to further evaluate the regional immune response. RESULTS: infection alone caused colonic inflammation and upregulated proinflammatory, macrophage-associated cytokines in the colon similar to changes seen in DSS-treated mice. Further upregulation occurred upon treatment with DSS. infection caused broad changes in mesenteric lymph node miRNA expression, but colitis-associated miRNAs were regulated similarly in infected and uninfected, DSS-treated mice. In spite of causing colitis exacerbation, infection did not prevent disease amelioration by I3C. I3C normalized both macrophage- and T cell-associated cytokines. CONCLUSION: Thus, I3C may be useful for inflammatory bowel disease patients regardless of EHH infection. The miRNA changes associated with I3C treatment are likely the result of, rather than the cause of immune response changes

    Mempelajari Sifat Fisika Sol Karet Cetak Dengan Filler Cangkang Telur Ayam

    Get PDF
    Tujuan penelitian adalah untuk menpelajari sifat fisika sol karet cetak dengan filler cangkang telur ayam. Sifat fisika yang dipelajari meliputi kekerasan, tegangan putus, ketahanan sobek dan ketahanan kikis. Penelitian dilakukan dengan 4 tahap yaitu pembuatan filler cangkang telur ayam, pembuatan sol karet cetak, pengujian sifat fisika dan penilaian secara visual. Perlakuan terdiri dari penggunaan cangkang telur ayam menggantikan filer karbon hitam meliputi perlakuan tanpa penggunaan cangkang telur ayam (A1), penggunaan filler cangkang telur ayam 15 Phr (B1), penggunaan filer cangkang telur ayam 30 Phr (C1) dan penggunaan filler cangkang telur ayam 45 Phr (D1). Hasil penelitian menunjukkan bahwa cangkang telur ayam dapat digunakan sebagai filler pada pembuatan sol karet cetak. Penggunaan filler cangkang telur ayam yang semakin meningkat menghasilkan sol karet cetak dengan kekerasan yang cenderung semakin menurun, tegangan putus yang semakin menurun, ketahanan sobek yang semakin menurun dan ketahanan kikis yang semakin meningkat. Secara fisual sol karet cetak yang dihasilkan dari filler cangkang telur ayam menghasilkan sol karet cetak yang baik (tidak cacat berupa sobek, lubang, lepuh, retak dan goresan)

    Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk

    Get PDF
    Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut-Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut-Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria , , and , the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families and known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1β and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut-Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI

    Altered Gut Microbiome in a Mouse Model of Gulf War Illness Causes Neuroinflammation and Intestinal Injury via Leaky Gut and TLR4 Activation

    Get PDF
    Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances

    American ginseng suppresses inflammation and DNA damage associated with mouse colitis

    Get PDF
    Ulcerative colitis (UC) is a dynamic, idiopathic, chronic inflammatory condition associated with a high colon cancer risk. American ginseng has antioxidant properties and targets many of the players in inflammation. The aim of this study was to test whether American ginseng extract prevents and treats colitis. Colitis in mice was induced by the presence of 1% dextran sulfate sodium (DSS) in the drinking water or by 1% oxazolone rectally. American ginseng extract was mixed in the chow at levels consistent with that currently consumed by humans as a supplement (75 p.p.m., equivalent to 58 mg daily). To test prevention of colitis, American ginseng extract was given prior to colitis induction. To test treatment of colitis, American ginseng extract was given after the onset of colitis. In vitro studies were performed to examine mechanisms. Results indicate that American ginseng extract not only prevents but it also treats colitis. Inducible nitric oxide synthase and cyclooxygenase-2 (markers of inflammation) and p53 (induced by inflammatory stress) are also downregulated by American ginseng. Mucosal and DNA damage associated with colitis is at least in part a result of an oxidative burst from overactive leukocytes. We therefore tested the hypothesis that American ginseng extract can inhibit leukocyte activation and subsequent epithelial cell DNA damage in vitro and in vivo. Results are consistent with this hypothesis. The use of American ginseng extract represents a novel therapeutic approach for the prevention and treatment of UC
    corecore