121 research outputs found

    Muscle Loss: The New Malnutrition Challenge in Clinical Practice

    Get PDF
    Recent definitions of malnutrition include low muscle mass within its diagnostic criteria. In fact, malnutrition is one of the main risk factors of skeletal muscle loss contributing to the onset of sarcopenia. However, differences in the screening and diagnosis of skeletal muscle loss, especially as a result of malnutrition in clinical and community settings, still occur mainly as techniques and thresholds used vary in clinical practice. The objectives of this position paper are firstly to emphasize the link between skeletal muscle loss and malnutrition-related conditions and secondly to raise awareness for the timely identification of loss of skeletal muscle mass and function in high risk populations. Thirdly to recognize the need to implement appropriate nutritional strategies for prevention and treatment of skeletal muscle loss and malnutrition across the healthcare continuum. Malnutrition needs to be addressed clinically as a muscle-related disorder and clinicians should integrate nutritional assessment with muscle mass measurements for optimal evaluation of these two interrelated entities to tailor interventions appropriately. The design of monitoring/evaluation and discharge plans need to include multimodal interventions with nutrition and physical exercise that are key to preserve patient’s muscle mass and function in clinical and community settings

    In Situ Observations of the Deformation Behavior and Fracture Mechanisms of Ti-45Al-2Nb-2Mn+0.8 vol pct TiBâ‚‚

    Get PDF
    The deformation and fracture mechanisms of a nearly lamellar Ti-45Al-2Nb-2Mn (at. pct) + 0.8 vol pct TiBâ‚‚ intermetallic, processed into an actual low-pressure turbine blade, were examined by means of in situ tensile and tensile-creep experiments performed inside a scanning electron microscope (SEM). Low elongation-to-failure and brittle fracture were observed at room temperature, while the larger elongations-to-failure at high temperature facilitated the observation of the onset and propagation of damage. It was found that the dominant damage mechanisms at high temperature depended on the applied stress level. Interlamellar cracking was observed only above 390 MPa, which suggests that there is a threshold below which this mechanism is inhibited. Failure during creep tests at 250 MPa was controlled by intercolony cracking. The in situ observations demonstrated that the colony boundaries are damage nucleation and propagation sites during tensile creep, and they seem to be the weakest link in the microstructure for the tertiary creep stage. Therefore, it is proposed that interlamellar areas are critical zones for fracture at higher stresses, whereas lower stress, high-temperature creep conditions lead to intercolony cracking and fracture.The authors are grateful to Industria de Turbo Propulsores, S.A. for supplying the intermetallic blades. Funding from the Spanish Ministry of Science and Innovation through projects MAT2009-14547-C02-01 and MAT2009-14547-C02-02 is acknowledged. The Madrid Regional Government supported this project partially through the ESTRUMAT grant P2009/MAT-1585. C.J.B. acknowledges the support from Grant SAB2009-0045 from the Spanish Ministry of Education for his sabbatical stage in Madrid.Publicad

    Effect of stress level on the high temperature deformation and fracture mechanisms of Ti-45Al-2Nb-2Mn-0.8 vol. pct TiB²: an 'In Situ' experimental study

    Get PDF
    The effect of the applied stress on the deformation and crack nucleation and propagation mechanisms of a gamma-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at. pct)-0.8 vol. pct TiB2) was examined by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K (700 °C) using a scanning electron microscope. Colony boundary cracking developed during the secondary stage in creep tests at 300 and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses. Colony boundary cracking was also observed in the constant strain rate tensile test. Interlamellar ledges were only found during the tensile-creep tests at high stresses (sigma > 400 MPa) and during the constant strain rate tensile test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack indicated that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with stress, but this fracture mechanism was always of secondary importance. Translamellar cracking was only observed along the primary crack.Funding from the Spanish Ministry of Science and Innovation through projects (MAT2009-14547-C02-01 and MAT2009-14547-C02-02) is acknowledged. The Madrid Regional Government partially supported this project through the ESTRUMAT grant (P2009/MAT-1585). CJB acknowledges the support from the Spanish Ministry of Education for his sabbatical stay in Madrid (SAB2009-0045).Publicad
    • …
    corecore